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Abstract. In an experimental environment, we simulated the situation of a user
who gives speech input to a system while walking through an airport. The time
pressure on the subjects and the requirement to navigate while speaking were
manipulated orthogonally. Each of the 32 subjects generated 80 utterances, which
were coded semi-automatically with respect to a wide range of features, such as
filled pauses. The experiment yielded new results concerning the effects of time
pressure and cognitive load on speech. To see whether a system can automatically
identify these conditions on the basis of speech input, we had this task performed
for each subject by a Bayesian network that had been learned on the basis of the
experimental data for the other subjects. The results shed light on the conditions
that determine the accuracy of such recognition.

1 Background and Issues

This paper is an experimental follow-up to the UM99 paper by Berthold and Jame-
son ([2]). Those authors argued the following points, among others:

In a world of increasingly mobile and ubiquitous computing, it is becoming more
important for a system (

�
) to be able to recognize the situation-dependent re-

source limitations of its user (	 )—for example, so as to be able to switch to a
slower but less demanding style of communication where appropriate (cf. Jame-
son et al., [5]). While they focused on the variable of cognitive load, we will also
consider the variable of time pressure.
With systems that allow speech input, one source of information about 	 ’s re-
source limitations is the features of 	 ’s speech; many previous studies have re-
vealed systematic influences of cognitive load (and to a lesser degree, time pres-
sure) on specific features of speech.

On the basis of a synthesis of previous results, Berthold and Jameson ([2]) presented
simulations that suggested that it might indeed be feasible to recognize a user’s current
cognitive load on the basis of a limited amount of speech input; but they noted that
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Fig. 1. Environment used in the experiment, with a typical pictorial stimulus.

specifically designed empirical studies would be required for a more definite answer to
this question.

In the present paper, we first describe an experiment that was explicitly designed
to fill this gap (Section 2). We then describe the learning of user models (in the form
of Bayesian networks) on the basis of the data from this experiment (Section 3). Fi-
nally, we show how well the learned models succeed at recognizing subjects’ resource
limitations in the experimental data (Section 4).

2 Experiment

2.1 Method

Materials. The experimental environment simulated a situation in which a user is
navigating through a crowded airport terminal while asking questions to a mobile as-
sistance system via speech (see Figure 1). In each of 80 trials, a picture appeared in the
upper right-hand corner of the screen. On the basis of each picture, the subject was to
introduce and ask a question (e.g., “I’m getting thirsty. Is there . . . will it be possible to
get a beer on the plane?”).

Design. Two independent variables were manipulated orthogonally:
NAVIGATION? Whether or not the subject was required to move an icon on the screen
through the depicted terminal to an assigned destination by pressing arrow keys,
while avoiding obstacles and remembering a gate number that comprised five dig-
its and one letter. When navigation was not required, the subject could ignore the
depicted terminal and concentrate on the generation of appropriate utterances in
response to the pictures.
TIME PRESSURE? Whether the subject was induced by instructions and rewards
(a) to finish each utterance as quickly as possible or (b) to create an especially
clear and comprehensible utterance, without regard to time.

Procedure. After an extensive introduction to the scenario, the environment, and
the 4 ( ���� ) conditions, each subject dealt with 4 blocks, each of which comprised



20 stimuli distributed over 4 destinations. Each block was presented in one of the 4
conditions, the order being varied across subjects according to standard procedures.

Subjects. The 32 subjects, students at Saarland University, were paid for their par-
ticipation. An extra reward was given to one of the participants who most successfully
followed the instructions regarding the time pressure manipulation.

Coding and rating of speech. The first author transliterated the subjects’ speech
input and coded it with respect to a wide range of features, including almost all of those
that had been included in previous published studies. On the basis of the transliterations
(minus the coding symbols), four independent raters rated the relative “quality” of the
32 utterances produced for each stimulus picture (quality being defined in terms of
grammaticality, relevance, clarity, and politeness). The raters also rated the pictorial
stimuli in terms of the complexity of the responses that they tended to call for.

In this paper, we report results only for a representative subset of five speech-related
variables, which we call symptoms because they reflect (albeit imperfectly) the psycho-
logical state of the subject induced by the experimental manipulations:

DISFLUENCIES: The logical disjunction of several binary variables, each of which
indexes one feature of speech that involves its formal quality: self-corrections
involving either syntax or content; false starts; or interrupting speech in the middle
of a sentence or a word.1

ARTICULATION RATE: The number of syllables articulated per second of speaking
time, after elimination of the time for measurable silent pauses.
CONTENT QUALITY: The average quality rank—between 1 (worst) and 32 (best)—
assigned to the utterance by the four raters.
NUMBER OF SYLLABLES: The number of syllables in the utterance.
SILENT PAUSES: The total duration of the silent pauses in the utterance, expressed
relative to the length of the utterance in words (to take into account the fact that
longer utterances offer more opportunities for pauses). A silent pause is any si-
lence within the utterance that lasts at least 200 ms.
FILLED PAUSES: The corresponding measure for filled pauses (e.g., “Uhh”).

2.2 Results

Figure 2 shows, for each of the six dependent variables listed above, how it was
influenced by the two independent variables TIME PRESSURE? and NAVIGATION?.

DISFLUENCIES. The disfluencies summarized by this variable increased to a signifi-
cant extent when the speaker was distracted by a navigation task ( ����������������� � !"!#� �%$&' � ' ! ).2 Perhaps more surprisingly, they increased to almost the same extent when the
speaker was not under time pressure ( �������(�)���*�+��� '�,�- , $.�/� ' !"� ). The reason may
be that subjects in this condition tended to produce longer, more complex utterances
(cf. the results for NUMBER OF SYLLABLES shown below), a tendency which is generally
associated with a higher frequency of disfluencies (see, e.g., Oviatt, [7]).

1 Filled and silent pauses are not counted here, because they are treated as separate variables.
2 The statistical significance of the each of the effects to be discussed in this section was deter-

mined through a univariate analysis of variance (ANOVA), in each case after a multivariate
ANOVA had shown that the univariate ANOVA was justified.
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Fig. 2. Mean values of the six speech symptoms for each of the four experimental con-
ditions.
(Thin lines: time pressure; thick lines: no time pressure.)

ARTICULATION RATE. On the average, subjects produced more syllables per second
when they were under time pressure than when they were not ( �������(�)�����10#�)� 23�4!5�6$7&' � '�' � ). Though this result is intuitively plausible, it is not logically necessary, given
that there are many other ways of coping with time pressure. There is also a statistically
highly reliable tendency to articulate less quickly when navigating (see the slope of the
two lines; �������(�)���8�9��2)� 2"! , �%$:& ' � '"' � ), as has been reported in a number of previ-
ous studies (cf. Berthold & Jameson, [2]). This effect is stronger under time pressure
(interaction: �������(�)���;�����<�32=05�%$& ' � ' ! ).

CONTENT QUALITY. On the average, an utterance produced under time pressure ranks
about 2 positions (out of 32) lower than one produced without time pressure ( ���>���(�)�?���
!#��� 2 ,"- �6$7& ' � '�' � ). The effect of having to navigate is even smaller, amounting to only
about one rank position ( ���>���(�)�?�@�A���)� ! - �5�6$7& ' � '�' � ).

NUMBER OF SYLLABLES. Although the subjects’ attempts to produce higher-quality
utterances in the absence of time pressure did not lead to much higher quality ratings,
they did produce much longer utterances ( ���>���(�)�?�B�C�=2)�<�3� - �%$D& ' � '�' � ). The most
important impact of the navigation task was to reduce this tendency: The increase in
length is about 50% without navigation and about 30% with navigation (interaction:
���>���(�)�?�E�F2)�G���#04�6$H& ' � ' � ). Evidently, when they had to navigate, subjects were less
ambitious with regard to the goal of producing unambiguous, high-quality utterances.



SILENT PAUSES. The pattern just discussed is even more pronounced for the symp-
tom of silent pauses: The sharp downward slope in the upper line of the graph shows
that, when subjects had to navigate, they largely abandoned the goal of generating
high-quality utterances that would require careful thought. This effect is especially
striking when one considers that a secondary task would in itself tend to increase the
number and/or length of silent pauses by demanding the subjects’ attention at least
intermittently—an effect which is in fact found in the condition with time pressure
(lower line) and in previous studies (cf. Berthold, [1]). In sum, the presence or ab-
sence of time pressure makes a big difference with regard to silent pauses overall
( �������������I�J� ' � , ��� �%$K& ' � '�' � ), and the main impact of the navigation task is to
reduce this difference (interaction: ���>�"���)�?�;�L�?!5� ' �"�)�%$M& ' � '"' � ).

FILLED PAUSES. The last graph in Figure 2 shows that filled pauses behave very simi-
larly to silent pauses in the two conditions with time pressure; in particular, they in-
crease when there is a navigation task (as has been shown in previous studies; cf.
Berthold, [1]). But in contrast to the case with silent pauses, they show a similar pattern
when there is no time pressure. Overall, there is a significant effect of the navigation
task ( ���>���(�)�?�N�O!5� 2"�3���%$1& ' � ' ! ) but no significant effect of time pressure and no
interaction. In sum, filled pauses might serve as a fairly straightforward index of the
presence of a distracting secondary task.

We have seen that each of the dependent variables discussed here shows one or two
statistically reliable effects of time pressure and/or the navigation task. These results
suggest that observation of these variables in a person’s speech might allow a system
to infer their current resource limitations. But it is not obvious how successful such
diagnosis will actually be in practice. This question is addressed in the next section.

3 Modeling

If we want to create a system that recognizes the resource limitations of its users on
the basis of their speech, we need to take two basic steps:

1. Use machine learning methods to create some sort of model relating resource
limitations to speech symptoms, using data such as those of this experiment
(Sections 3.1 and 3.2 below).

2. Employ this model during an interaction with each user, using the features of
their speech as evidence (Section 4).

3.1 Bayesian Network Structure

Regarding Step 1: Among the various techniques that could potentially be used,
we employ Bayesian networks (BNs).3 Within this framework, there are various ways
of (a) learning a general user model on the basis of data from a sample of users and
(b) adapting it to each individual user on the basis of data about that user (see Jameson
& Wittig, [6]). The method employed in the present study is illustrated in Figure 3.

3 Accessible introductions to BNs are now available from many sources; the classic exposition
is that of Pearl ([8]).
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Fig. 3. Structure of the dynamic Bayesian network used in the evaluation.
(Nodes within the boxes correspond to temporary variables that index features of the current
utterance. Each number in parentheses shows the number of discrete states for the variable in
question.)

(The lower part labeled TIME SLICE 2 can be ignored for the moment.) The two nodes
NAVIGATION? and TIME PRESSURE? on the left correspond to the two main independent
variables of the experiment. The six nodes on the right in TIME SLICE 1 correspond to the
dependent variables that we have discussed above.

The six nodes on the far right correspond to individual base rates for the six symp-
tom variables. They are introduced to take into account individual differences in the
overall level of the symptom variables. The value of each such variable is constant for
each 	 : It is simply computed as the mean value of the variable in question for the
entire experiment.4

4 The BN structure in the figure implies that these base rate variables are statistically indepen-
dent. This assumption was shown to be false by both structure learning algorithms and factor
analyses. Nonetheless, this simplified model was found to perform better at the task of recog-
nizing a speaker’s time pressure and cognitive load than did more complex models that took
into account the statistical dependencies. A possible reason is that in the more complex models
the estimates of some probabilities in the learned BN are less accurate because they are based
on relatively few observations. In any case, this result illustrates the general point (see, e.g.,
Greiner et al., [4]) that the goal in learning BNs is often to learn not the one “correct” model
but rather the model which works best for a particular task in a particular setting.



The final node in the BN, DIFFICULTY OF SPEECH TASK, refers to the rated complexity
of the speech task created by the stimulus picture (cf. Section 2.1).

Our question in the evaluation study will be: If a user 	 produces a sequence of
utterances in a given experimental condition, how well can a system

�
recognize that

condition? Therefore, the variables NAVIGATION? and TIME PRESSURE? can be viewed here
as static variables whose value does not change over time. The six base rate variables
are also static. By contrast, each of the variables inside the boxes labeled TIME SLICE 1 and
TIME SLICE 2 refers to an aspect of just one utterance. Hence corresponding temporary
nodes need to be created for each utterance. We are therefore dealing with a dynamic
Bayesian network (DBN) that comprises a series of time slices.5

3.2 Learning of a BN

Since we want to test a learned BN model with the data of a given user 	 , we
must not include 	 ’s data in the data that are used for the learning of the corresponding
BN. Accordingly, we learned for each 	 the conditional probability tables (CPTs) for a
separate BN using the data from the other 31 subjects. The learned BN has the structure
shown in Figure 3 minus the nodes shown for TIME SLICE 2; the CPTs for the temporary
variables within each time slice are the same as the ones learned for TIME SLICE 1.

The learning method we employed is the usual maximum-likelihood method for
learning fully observable Bayesian networks (see, e.g., Buntine, [3]): The estimate of
each (conditional) probability is computed simply in terms of the (relative) frequencies
in the data.

4 Evaluation

The procedure for evaluating a learned BN is given in Table 1.
Figure 4 shows the results of the evaluation, aggregated over all 32 subjects.6

Looking first at the results for recognizing time pressure (left-hand graph), we see
that the BNs are on the whole rather successful: The average probability assigned to
the actual current condition rises sharply during the first few observations. Note that
recognition of time pressure is easier when there is no navigation task.7 This result is
understandable given the overall effects shown in Figure 2: On the whole the effects
of time pressure were greatest when there was no navigation task, since speakers could
respond more sensitively to the time pressure (or lack of it).

5 The general principles of dynamic Bayesian networks are explained, e.g., by Russell and
Norvig ([9, chap. 17]). A discussion with regard to user modeling of the sort done here is
given by Schäfer and Weyrath ([10]). A detailed understanding of DBNs is not required for
the reading of this paper.

6 The results for individual subjects are much less smooth than these aggregated results: The
individual curves often show sharp jumps and extreme values.

7 PRQ�S T3U for the difference between the average of the two upper curves and the average of the
two lower curves. All statistical tests in this section are two-tailed sign tests based on the last
10 observations.



Relevant variables and their values 
• A user U 
• Values t and n of the Boolean variables T (time pressure?) and N (navigation?) 

Task 
Infer the values of T and N on the basis of symptoms in U’s speech 

Preparation of the test data 
Select the 20 observations for U in which T = t and N = n, in the order in which they 
occurred in the experiment 

Evaluating recognition accuracy 
Initialize the model: 

1. Create the first time slice of the BN for U 
2. Instantiate each of the individual baseline variables with its true value for U (but 

leave the variables T and N uninstantiated) 
For each observation O in the set of observations for U: 

1. In the newest time slice of the BN, derive beliefs about T and N: 
• Instantiate all of the temporary variables for this time slice with their values in O 
• Evaluate the BN to arrive at beliefs regarding T and N 
• Note the probabilities assigned at this point to the true values of T and N, 

respectively 
2. Add a new time slice to the dynamic BN to prepare for the next observation 

Table 1. Procedure used in evaluating the recognition accuracy of the learned Bayesian
networks.
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Fig. 4. Accuracy of the learned BNs in inferring the correct value of TIME PRESSURE?

(left) and NAVIGATION? (right).
(Each curve shows the aggregated results for one combination of values of the variables TIME
PRESSURE? and NAVIGATION?. In each curve, the point for the ith observation shows the average
probability which the BN assigned to the correct value of the variable in question after processing
the first i observations.)



Recognition of the navigation task is considerably less successful: The highest curve
in the right-hand graph is significantly lower than the lowest curve in the left-hand graph
during the last 10 observations ($V&W� ' � ). This result is likewise understandable given
the overall effects shown in Figure 2, where on the whole the effects of time pressure
(reflected in the differences between the two lines in each graph) were more substantial
than those of the navigation task (reflected in the slopes of the lines). In particular,
the slopes of the lines in Figure 2 for the time pressure condition are especially flat, a
tendency which corresponds with the very poor results for recognizing the navigation
task when subjects are under time pressure. Essentially, since the speakers are trying
to strip their utterances down to a bare minimum anyway, there is not much complex
language processing that could be affected by a secondary task. Even the recognition
accuracy when there is no time pressure is rather modest: After about 5 observations,
the system assigns a probability of .60 to .65 to the correct hypothesis.

But note that it is not necessarily a problem if many users cope with a secondary
task so well that it is difficult to recognize, on the basis of their speech, whether they
are currently performing it or not. For these particular subjects, it may be less important
to know whether they are performing a secondary task, since the secondary task may
have little impact on their performance of other tasks (e.g., interacting with the mobile
system). Further investigation of this issue will help to put the results just reported into
perspective.

We could have made the navigation task easier to recognize simply by increasing
its complexity in the experimental environment—perhaps to a point where it caused
subjects’ speech generation to break down completely. Instead, while developing the
experiment we adjusted the level of complexity of the navigation task until it seemed
typical of a situation in which a user is walking around a crowded airport while speaking
into a device.

5 Summary of Contributions and Work in Progress

Our experiment differs from comparable previous experiments in (a) the number of
independent variables examined simultaneously and (b) the relevance of the experimen-
tal tasks to mobile computing scenarios. A number of the specific effects identified had
not been reported previously.

The evaluation of the learned user models is to our knowledge the first empirical
evaluation of the feasibility of recognizing a person’s time pressure and/or cognitive
load on the basis of speech input.

We are currently pursuing the following extensions of this work:

Use of more theoretically interpretable BN structures (cf. Wittig & Jameson, [11])
which will make it possible to analyze more clearly the reasons for particular
aspects of the learned models’ performance.
Inclusion in the more articulate BN models of the remaining symptom variables
that were recorded in the experiment but not included in the present study (cf.
Section 3.1).



Systematic studies of the reasons for the observed performance of the models
(e.g., comparisons with tests in which some of the variables are omitted or not
instantiated).

For practical use of these results, it will obviously be necessary to devise ways of
coding the features of speech fully automatically, rather than largely manually as in
the present study. Given that this goal is quite challenging for some of the features,
our strategy has been to start by determining the diagnostic value of the features, so
that the benefits of coding them automatically can be assessed. The results so far in-
dicate that the features that would be most difficult to encode (e.g., content quality,
self-corrections) have less diagnostic value than relatively easy features (e.g., duration
of silent pauses, number of syllables).
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