
Evaluation of Automatically Designed Mechanisms

Anthony Jameson, Christopher Hackl and Thomas Kleinbauer
DFKI, German Research Center for Artificial Intelligence

Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany
<first name>.<last name>@dfki.de

Abstract

In their UAI 2002 paper “Complexity of Mecha-
nism Design”, Conitzer and Sandholm presented
computationally tractable methods for automated
mechanism design (AMD): For a given specific
preference aggregation problem, such a method
generates a nonmanipulable outcome selection
mechanism. The present paper examines some of
the decisions that need to be made by a designer
who is considering the application of AMD in
a particular context. Using examples from the
application area of rating aggregation, we dis-
cuss several potentially desirable properties of
mechanisms: symmetry, determinism, familiar-
ity, equity, and robustness. Our example evalua-
tions illustrate that some of these properties can
be straightforwardly achieved with the methods
of AMD, whereas others may sometimes require
the designer to resort instead to standard mecha-
nisms (such as averaging of ratings) that may not
fall within the scope of AMD. We conclude that it
is advisable, in any particular application setting,
to conduct comparative evaluations of potential
mechanisms; and that these comparisons should
sometimes include hand-crafted mechanisms.

1 Introduction

1.1 Nonmanipulable Aggregation of Preferences

In many practical settings, an algorithm is required that
solves a preference aggregation problem: choosing an out-
come on the basis of the expressed preferences of two or
more agents. Research on methods for solving such prob-
lems has been conducted for decades and within several
fields, including economics, political science, game the-
ory, and artificial intelligence. Stimulated especially by
Arrow’s seminal book Social Choice and Individual Values
([1]), there has been a great deal of discussion of the de-
sirable properties of preference aggregation mechanisms,

which are often surprisingly difficult to achieve simultane-
ously in a single mechanism.

One property that is often desired is nonmanipulability
(sometimes referred to with other terms, such as incentive-
compatibility): Each agent involved should find that it is
in her own interest to specify her preferences accurately;
it should not be possible for an agent to bring about a
more desirable outcome for herself by stating her prefer-
ence strategically (see, e.g., [10, 7, 8]). For various particu-
lar classes of preference aggregation problem, such as par-
ticular types of auction, mechanisms have been designed
that have this desirable property,

In a recent paper ([2]) Conitzer and Sandholm (referred
to hereafter as “CS”) recently introduced a novel ap-
proach to this general problem, automated mechanism de-
sign (AMD): As an alternative to the hand-crafting of gen-
eral mechanisms, their method makes it possible to have
a mechanism designed automatically which is optimal for
a particular setting. CS present a number of results con-
cerning the computational complexity of AMD. In a more
recent manuscript ([3]), they discuss several examples of
applications of AMD, some of which make use of advances
in the methods relative to the presentation in [2].

The present paper discusses example applications in one
particular type of setting. While these applications may
be of interest in themselves, the main contribution of this
paper is on a more general level: We show that, when con-
sidering a particular application of AMD, the designer has
a number of choices to make:

1. The AMD framework itself allows the designer to
make a variety of choices about the properties of
the to-be-generated mechanism, even within a spe-
cific application situation. These choices can have
consequences of various sorts, ranging from the ex-
pected utility that will result from the application of
the mechanism to the subjective acceptability of the
mechanism to any humans that are involved in the
process. Some type of comparative evaluation of the
possible mechanisms is therefore required. The eval-

uation may consist only in an intuitive assessment of
the suitability of a given mechanism for a given appli-
cation, but it may also involve quantitative analysis
of the performance of the mechanism under various
conditions.

2. It can also be worthwhile to consider the alternative
of using simple hand-crafted mechanisms, such as the
averaging of preferences that are expressed on a nu-
merical scale.1 Even though such a mechanism
may be less desirable than an automatically generated
mechanism in one or more respects, it may be found
to be the most suitable one in a particular application
setting.

The “evaluation of automatically designed mechanisms”
referred to in the title of this paper is, therefore, not an
evaluation of the entire approach of automated mechanism
design—an enterprise that would exceed the scope of any
single paper. The focus is, rather, on criteria for evaluating
particular automatically designed mechanisms in particular
application settings.

1.2 Examples of Application Settings

For concreteness, in this paper we restrict our attention to
a particular type of preference aggregation problem: the
aggregation of preferences that can be expressed on one-
dimensional rating scales for the purpose of arriving at a
joint rating by several raters. Although this class includes
only a tiny fraction of the settings to which AMD can be
applied, it does have considerable generality and practical
significance, as the examples given below will show. And
although the specific quantitative results that we report can-
not be generalized to different settings, the general criteria
and considerations we present are also relevant to very dif-
ferent application areas of AMD (e.g., the ones discussed
in [3]).

In this section, we give motivating examples from three
typical applications in which nonmanipulable rating aggre-
gation is a serious issue.

Reviewers’ Ratings of Conference Papers Some con-
ference management systems now allow reviewers to (a)
view, for a paper that they have reviewed, the reviews
and ratings that the other reviewers have provided; and
(b) change their own reviews and ratings. Although these
possibilities have some advantages, they also make it es-
pecially easy for a single reviewer to manipulate the out-
come of the process. Consider the example illustrated in
Figure 1: Reviewer 3 originally gave a particular paper an
overall rating of 3 on a scale from 1 to 5. She then sees that

1The term hand-crafted refers in this paper to mechanisms
that are chosen and/or invented by a human mechanism designer
rather than automatically generated by the methods of CS. A
hand-crafted mechanism may therefore be a well-known standard
algorithm; cf. 4.2.

[After seeing other ratings]

[Original]

1 2 3 4 5

1 2 3 4 5

Rating by Reviewer 1:

Rating by Reviewer 2:

1 2 3 4 5

Rating by Reviewer 3:

1 2 3 4 5

Rating by Reviewer 3:

Figure 1. Example of rating manipulation in the context of
the reviewing of conference papers.
(Discussion in text.)

Reviewers 1 and 2 both gave ratings of 4. Realizing that the
average rating, after rounding up, will be 4, she may shift
her own rating down to 1, thereby ensuring that the average
will be the “correct” rating 3. It is an appealing idea to have
a method for aggregating reviewers’ ratings which, if cor-
rectly understood by the reviewers, would encourage them
to specify their sincere rating of each paper’s value.2 Inci-
dentally, this example illustrates that manipulation does not
presuppose dishonesty or an exclusive focus on one’s own
interests: Reviewer 3 may see herself simply as ensuring
that the overall rating is the “correct” one.

Preferences for Shared Music McCarthy and Anagnost
([6]) introduced the system MUSICFX, which selects a
genre of music to be played in a fitness center on the ba-
sis of the stored music preferences of the members who are
currently working out. For each of 91 genres (e.g., “clas-
sic rock”), each fitness center member specifies a rating on
a five-point scale ranging from “I hate this music” to “I
love this music”. Each time a member enters or leaves the
center or changes their ratings, MUSICFX applies a simple
formula (taking the sum of the squared ratings) to compute
an overall preference index for each genre for the set of
members currently working out. The 91 indices are then
mapped onto 91 probabilities that the system uses to de-

2Viewing this particular problem as a preference aggregation
problem presupposes that the goal is to arrive at an overall rating
that in some sense appropriately maximizes the satisfaction of the
individual reviewers. The problem can also be viewed as a be-
lief aggregation problem, where each rating constitutes evidence
concerning the “true” rating of the paper. The formal methods
discussed in this paper are actually applicable to the latter con-
ception as well, for example if the notion of utility is replaced
by the logarithm of the likelihood of an observed rating given a
particular “true” rating.

Figure 2. Dialog box for the collaborative specification of
preferences.
(The currently active group member is Claudia. The preferences
of each member are represented by a uniquely colored letter;
Claudia cannot change the position of the letters “T” and “R”..)

termine which genre to play at any given moment. During
the initial trial period, McCarthy and Anagnost actually ob-
served members trying (with varying degrees of success) to
manipulate the system by changing their preference speci-
fications as a function of the music currently being played
and the other members who were present.

Multi-Attribute Preferences in a Group Recommender
System The research group of the present authors has de-
veloped a system (described in [4]) that recommends prod-
ucts and services to a group of users whose members can
communicate only asynchronously via the web-based inter-
face. Like the web-based system ACTIVE BUYER’s GUIDE
(http://www.activebuyerguide.com/) and the once-popular
system PERSONALOGIC (which is no longer available),
this system requires each user to specify preferences con-
cerning several attributes for each of a number of value di-
mensions. A novel aspect of the dialog box for specifying
preferences (see Figure 2) is the way in which it allows the
current user to see any previously specified preferences of
other group members—and to copy them conveniently if
she so desires. This feature has the advantage of allow-
ing users to minimize the amount of tedious rating work by
copying (and postediting) ratings of a group member with
similar preferences. But it also opens the door to manipu-
lation in the same way as with the reviewing problem.

2 Automated Mechanism Design

We reproduce here only the key notation and concepts of
CS that are necessary for the understanding of the present
paper.

A preference aggregation setting includes a set of outcomes�
and a set of agents � with � ������� . In the context of

rating aggregation, the outcomes are the possible aggregate
ratings.

In addition, the preference aggregation setting includes, for
each agent, the following elements:

1. A set of types �
	
In the context of rating aggregation, this corresponds
to the set of possible ratings (e.g., the five values on
a scale). The true type of an agent is the rating that
corresponds to that agent’s true preference.

2. A probability distribution � 	 over � 	
This distribution represents an a priori expectation
about the true type of the agent.

3. A utility function � 	 : �
	�
�����

This function indicates how (dis)satisfied the agent
will be if a particular outcome is selected.

A randomized mechanism for a preference aggregation set-
ting is a function that, given any vector of reported types,
produces a probability distribution over the outcome set.
That is, it is a function ����������
����������
 �
!#"%$�&('*)�+-,#+*. �#/

. 3 Considering for concreteness the
case where there are only two agents, the mechanism can
be seen as a three-dimensional matrix of probabilities �10	32 ,
where � 0	32 is the probability of choosing the outcome 4 0
when the reported types are 56�	 and 57�2 .
With regard to the criterion of nonmanipulability, CS
consider two solution concepts, dominant strategies and
Bayes-Nash equilibrium. We restrict our attention to the
former concept, which is much more robust and therefore
better applicable in settings such as the ones introduced in
1.2. In particular, the dominant-strategies concept is appli-
cable even when one rater does not know the prior proba-
bilities for the true types of the other rater(s) but does know
what preference(s) one or more other raters have specified.
Specifically, a mechanism is said to implement its outcome
function in dominant strategies if truth telling is always op-
timal even when the types reported by the other agents are
already known. CS show how this condition can be ex-
pressed in terms of constraints on the values of the �10	32 that
constitute the mechanism. One such constraint states that,
whatever type Agent 2 may report, the expected utility of
the outcome will be highest for Agent 1 if he reports his
true type 58�	 :

3CS also consider purely deterministic mechanisms, but they
show that the more general class of randomized mechanisms has
advantages in terms of both (a) the computational complexity of
finding a suitable mechanism and (b) the utility yielded by the
mechanisms. Accordingly, we will consider the broader class in
this paper. But as we will see in Section 3, determinism can be
a desirable property of a mechanism in some application settings.
In [3], Conitzer and Sandholm include examples of automatically
designed mechanisms that were explicitly constrained to be deter-
ministic.

http://www.activebuyerguide.com/

For every 57�2:9 �
� , for every 58�	8; 5<�= 9 �#� :>
0�? @�ACBED

� 0	32 � �
. 5 �	 ; 4 0

/GF >
0�? @�ACBED

� 0= 2 � �
. 5 �	 ; 4 0

/ � (1)

There is of course an analogous constraint concerning the
type reported by Agent 2.

It is trivial to find just any mechanism that satisfies these
constraints. For example, a mechanism that always yields
the same outcome regardless of the reported types, or that
always yields the outcome corresponding to the type re-
ported by Agent 1, is nonmanipulable. Typically we will
want to find a mechanism that maximizes the expected
value of some objective function H . 56�	7; 5E�2I; 4 0

/
(e.g., the sum

of the utilities of the outcome for the individual agents). So
mechanism design can be seen as the optimization problem
of finding a matrix of �J0	32 that fulfill the nonmanipulability
constraints while maximizing the expression:

>
	K? LNMO BEP M

>
2Q? LSRT BEP R

>
0�? @�AUBED

� �
. 5 �	
/ � �
. 5 �2
/ � 0	V2 H

. 5 �	 ; 5 �2 ; 4 0
/ � (2)

As long as the objective function H is polynomially com-
putable, this problem can be solved in polynomial time by
linear programming.

3 Desirable Properties of Mechanisms

Although AMD ensures that an automatically designed
mechanism will maximize the expected value of the ob-
jective function, given the other constraints specified, there
are other potentially desirable properties of mechanisms.
All of these properties have been discussed in relevant pre-
vious literature (e.g., on social choice and mechanism de-
sign). In this section, we will introduce and discuss these
properties concretely with reference to the example prob-
lem of aggregating reviewers’ ratings. Our goal is not to
add new general insights concerning these properties but
to show how they can be taken into account by a designer
who is considering using AMD. We will see that some of
the properties can be dealt with straightforwardly within
AMD, while others are more problematic.

As a concrete illustration, we first display a mechanism de-
signed automatically with the method of CS without regard
to any of these desirable properties. Figure 3 visualizes a
mechanism that was generated with 2 agents and 5 possible
ratings using straightforward utility functions and objective
functions.4 It can be verified visually that the mechanism
is nonmanipulable for both agents, even if the rating of the

4In the terms introduced in Section 4.1 below, this mechanism
was generated with the linear utility function, without regard to
equity, with nonuniform prior expectations, and without the sym-
metry constraint. This mechanism is compared with several oth-
ers in Table 2.

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

Figure 3. Example of an automatically designed nonma-
nipulable mechanism.
(Each histogram shows the probability distribution over outcomes
for a particular combination of ratings by two raters; the rating of
Rater 1 is indicated with a dashed line, that of Rater 2 with a solid
line.)

other agent is known. But the mechanism seems unlikely to
be adopted, for example, by any conference program chair.
Its drawbacks can be formulated in terms of some desirable
properties of mechanisms:

Symmetry This particular mechanism exhibits several
instances of asymmetry.5 For example, when Rater 1
specifies “4” and Rater 2 “5”, the outcome is “4”; but when
Rater 1 specifies “5” and Rater 2 “4” the outcome is “5”.
It would presumably be hard to persuade Rater 2 that this
type of pattern was justifiable, in the absence of any rele-
vant difference between the two raters (e.g., a greater im-
portance of Rater 1, which would be reflected in an asym-
metric objective function). Even if it is not obvious what
particular disadvantage anyone suffers from an asymmetric
mechanism, there are presumably at least some situations
in which a symmetric mechanism will be more readily ac-
cepted.6

There is also a technical advantage of symmetry: The sym-
metry constraint implies that many pairs of probabilities
within the matrix for a mechanism must be equal, and this
fact can be exploited in the formulation of the linear opti-
mization problem so as to reduce the number of variables

5A formalization of the concept of symmetry in this context
will be given in 4.1.

6In social choice theory, the same basic criterion is captured
by the notion of anonymity, or invariance under permutation of
the agents involved.

significantly. As a result, settings involving larger numbers
of agents and/or outcomes can be dealt with if the symme-
try constraint is introduced.

Determinism Nondeterministic mechanisms like coin-
flipping are widely accepted in some situations. But a prob-
ability distribution like the one at the bottom right in Fig-
ure 3 has an arbitrary appearance that could diminish its
acceptability to humans.

Perhaps more importantly, the need to perform some sort
of random drawing to determine the outcome imposes what
may be serious practical constraints: This event (e.g., a roll
of dice by a program chair) will have to occur at some par-
ticular point in time. Before that point, no-one will know
what the outcome is. And after that point, changes to pref-
erence specifications should no longer be allowed, even if
it is feasible to repeat the random drawing process. For if
subsequent changes are allowed, a rater may be able to ma-
nipulate the outcome by changing her rating slightly and
hoping for better luck in the next draw. Even though her
expected utility on the second draw cannot be higher than
her expected utility on the first draw was (by the definition
of nonmanipulability), it may well be higher than the actual
utility that she derived from the first draw.

Therefore, in some settings it may be desirable to restrict
the automatically generated mechanisms to those which are
deterministic, even if this restriction entails an increase in
computational cost and/or a decrease in the expected value
of the objective function. Some examples of mechanisms
generated in this way are given by Conitzer and Sandholm
in [3].

Familiarity Even if Figure 3 showed a symmetric pat-
tern of entries involving only probabilities of 1.0 and 0.0,
the mechanism would not necessarily be easy for people to
understand, remember, or apply. By contrast, familiar ag-
gregation methods like averaging (perhaps with rounding)
or taking the median rating can often be applied by any-
one who knows the ratings; there is then no need to consult
an external source in order to find out what the outcome
is. Even if the familiar method is manipulable (as is the
case with averaging), its familiarity may in some situations
constitute enough of an advantage to justify its use.

The criterion of familiarity is the most elusive of the cri-
teria discussed here. A more detailed analysis could break
it down into several more specific and formalizable crite-
ria. For example, one could attempt to predict on the basis
of general principles how easily a human agent could per-
form each of the following tasks using particular resources
(e.g., performing only mental arithmetic): computing the
outcome for particular preference specifications; verifying
that the mechanism is nonmanipulable; and verifying that
the mechanism tends to yield outcomes that are desirable
according to the objective function. Ideally, we would want

to be able not only to evaluate the familiarity of a given
mechanism but also to constrain the mechanism design pro-
cess so that it tends to generate familiar mechanisms—as
can be done for the criteria of symmetry and determinism,
which can be seen as specific factors that contribute to fa-
miliarity.

Equity In many of the cells of Figure 3, we see that the
outcome is more favorable for one of the raters than for the
other one. For example, when Agent 1 specifies “4” and
Agent 2 “2”, the outcome is “2”. The intermediate outcome
“3” would yield exactly the same total utility according to
the utility function that this mechanism presupposes, while
being more equitable—and thus presumably more accept-
able to human participants in some situations.

There have been many discussions of ways of defining eq-
uity and of the role that it should play in social choice
problems (see, e.g., [5, 9]). In the present context, the
main issue is how well equity can be taken into account
within AMD. As we will see in 4.1, with some definitions
of the concept, it is straightforward to take equity into ac-
count by including an index of equity as a component of
the objective function, whereas other definitions cannot be
so straightforwardly realized.

A more specific question in any given context concerns the
extent to which an attempt to increase equity will require
sacrifices with respect to either total utility or the other de-
sirable properties of mechanisms just discussed. Answer-
ing this question may require quantitative simulations like
the ones presented in Section 5.

Robustness Although the mechanism in Figure 3 is guar-
anteed to be nonmanipulable by agents whose utility func-
tion is exactly the one that was assumed when the mech-
anism was generated, it might be manipulable if one or
both of the agents has a slightly different utility function
(e.g., one which is concave or convex instead of linear;
cf. Section 4.1). By contrast, some hand-crafted mecha-
nisms (e.g., the median mechanism, discussed below) make
hardly any assumptions about the nature of the utility func-
tions: They presuppose only that the single rating speci-
fied by an agent is at least as desirable to that agent as any
other rating. Since in practice the form of the relevant util-
ity functions may not be known precisely, dependence on a
specific class of utility functions can be a drawback.

In principle, we could allow each agent to specify not only
a single preferred rating but also the form of her entire util-
ity function (e.g., whether it is linear, convex, or concave;
cf. 4.1). But there are limits to this strategy, since in general
the number of possible utility functions that an agent might
have can be very large, requiring the definition of a large
number of possible types for each agent. As is pointed out
in [3], increasing the number of types tends to lead to rapid
increases in the computational cost of AMD. Hence it will

often be necessary to make some restrictive assumptions
about the form(s) of the utility functions of the agents—
assumptions whose truth may be hard to guarantee.

4 Method

In this and the following section, we will look at the proper-
ties of the mechanisms generated by the method of CS in a
number of different settings, comparing them with selected
hand-crafted mechanisms.

4.1 Settings

Restrictive Assumptions We restrict our attention to set-
tings, such as the ones mentioned in the examples so far,
which are symmetric in terms of the assumptions made
about the agents involved: The number of possible types
and their a priori probability distribution are the same for
all agents, as are the agents’ utility functions. This assump-
tion is reasonable when the agents are drawn unsystemati-
cally from some population.

A more arbitrary assumption is that the number of possible
types is equal to the number of possible outcomes, with the
following one-to-one relationship: An agent has the type 5 	
iff he prefers the outcome 4 	 to all other outcomes. It is of
course possible for the number of outcomes to be greater
than the number of types (as when fractional aggregated
ratings such as “4.5” are allowed), and vice-versa.

Numbers of Agents We consider only settings with 2 or
3 agents. As CS note, since the complexity of the linear op-
timization problem is exponential in the number of agents,
their method is tractable only for small numbers of agents.

Numbers of Outcomes; Presence vs. Absence of the
Symmetry Constraint The numbers of outcomes (and
types) considered were the largest ones that we could han-
dle in a reasonably short time (less than 1 minute) on a
normal PC:7

In settings where it was feasible, we generated mechanisms
both with the constraint of symmetry (cf. Section 3) and
without this constraint, so as to be able to compare the re-
sults. With 2 agents, this was possible with 5 outcomes;
with 3 agents, it was possible with 4 outcomes.

It was possible to handle somewhat larger numbers of out-
comes if the symmetry constraint was always imposed: for

7For more realistic (and encouraging) indications of the
size of problems that can be handled by AMD, see the
scalability results reported by Conitzer and Sandholm ([3]),
whose implementation is more efficient than the one that we
used. In our implementation, the specification of the lin-
ear programming problem described in Section 2 is built up
by a JAVA program and solved by the Cassowary solver
(http://www.cs.washington.edu/research/constraints/cassowary/).

2 agents, 7 outcomes, and for 3 agents, 5 outcomes.

The symmetry constraint can be defined as follows for 2
agents, with the obvious generalization for 3 agents:

W
	YX 2 � 0	V2 �Z� 02S	 � (3)

Utility Functions We used three representative utility
functions for the agents, defined as follows:

Linear: � . 5 	 ; 4 0
/ �\[]� . 4 	 [^4 0

/ �
Concave: � . 5 	 ; 4 0

/ �_[. 4 	 [�4 0
/ �

Convex: � . 5 	 ; 4 0
/ �_[a`cb .ed-f � . 4 	 [^4 0

/ � /
Thus each utility function presupposes that the dissatisfac-
tion of an agent increases monotonically with the distance
between the outcome and his own preferred outcome; the
“distance” being simply the difference between the two in-
dices.

When interpreting the results presented below, it will be
helpful to bear in mind the following points concerning the
outcome that maximizes the total utility of two agents who
have different preferences:

With the linear utility function, any outcome between
the favored outcomes of the two agents (including ei-
ther of these outcomes) will yield the same total utility.
With the concave utility function, the utility-
maximizing outcome is one that is (about) midway
between the preferred outcomes of the two agents.
(There may be no outcome that is exactly midway be-
tween them.)
With the convex utility function, the utility-
maximizing outcome is one that is exactly the
preferred outcome of one of the agents.

Objective Functions One objective function is simply
the total utility for the agents involved, defined as follows
for 2 and 3 agents, respectively:

HEg . 5 �	 ; 5 �2 ; 4 0
/ �h� . 5 �	 ; 4 0

/ f � . 5 �2 ; 4 0
/ � (4)

HEg . 5 �	 ; 5 �2 ; 5Ei= ; 4 0
/ ��� . 5 �	 ; 4 0

/ f � . 5 �2 ; 4 0
/ f � . 5Ei0 ; 4 0

/ � (5)

A second component is equity, defined as follows for 2 and
3 agents, respectively:

H7j . 5 �	 ; 5 �2 ; 4 0
/ �\[]� � . 5 �	 ; 4 0

/ [�� . 5 �2 ; 4 0
/ �k� (6)

H j . 5 �	 ; 5 �2 ; 5 i= ; 4 0
/ �h[dUlnm
o7. � . � . 5 �	 ; 4 0

/ [p� . 5 �2 ; 4 0
/ �f � . � . 5 �	 ; 4 0

/ [p� . 5Ei= ; 4 0
/ �f � . � . 5 �2 ; 4 0

/ [p� . 5Ei= ; 4 0
/ � / �

(7)

Note that this index of equity captures the expected extent
to which a specific outcome generated by the mechanism
will be seen as equitable. According to a more global con-
ception of equity, a mechanism is equitable to the extent to

http://www.cs.washington.edu/research/constraints/cassowary/

which, a priori, the expected value of an outcome is equal
for all agents. This conception of equity cannot be encoded
in the objective function, because it involves a weighted av-
eraging over all possible preference specifications and out-
comes. (This type of equity is, however, guaranteed if the
mechanism is symmetric.)

Since there is little point in maximizing equity without re-
gard to utility, the second objective function used for the
generation of mechanisms, referred to below as utility +
equity, is defined as H7g f H j . It may of course make sense to
assign different weights to utility and equity, but the results
reported below will give some idea of what would happen
with different weights as well.

Prior Expectations Concerning Types In many practi-
cal rating settings, (e.g., the one shown in Figure 2 and, to
a lesser extent, the one shown in Figure 1), preferences in
the upper half of the scale are much more common than
those in the lower half. With this type of preference distri-
bution, a relatively high proportion of low ratings is likely
to be due to manipulation, if manipulation is possible. We
therefore chose the following (rather extreme) nonuniform
distributions for our experiments:

With 4 outcomes: [.05 .05 .45 .45]
With 5 outcomes: [.05 .05 .30 .30 .30]
With 7 outcomes: [.03 .03 .04 .225 .225 .225 .225]

We also generated and analyzed corresponding mecha-
nisms based on uniform distributions. Since the results are
largely similar to those for the nonuniform priors, we will
refer to the results for uniform priors only occasionally.

4.2 Hand-Crafted Mechanisms

For each setting, we compared the automatically generated
mechanisms with the following hand-crafted mechanisms:

Average To enhance comparability with the automat-
ically generated mechanisms, we define the averaging
mechanism in such a way that noninteger outcomes are
avoided: A noninteger average is rounded to the nearest
integer, unless its fractional part is 0.5, in which case one
of the two neighboring integers is chosen with equal prob-
ability.

This mechanism has the appealing properties of symme-
try, familiarity, and applicability to any number of agents.
Moreover, it tends to maximize total utility (aside from the
rounding off) if the concave utility function defined above
is used. On the down side, it is manipulable (as was illus-
trated by the first example in 1.2). Therefore, in addition to
computing results on the assumption that the agents specify
their preferences accurately, we will require a mechanism
that simulates manipulation:

Manipulated Average We will not try to examine all
possible forms of manipulation, including, for example,
cases where two agents form a coalition against the third
agent. One simple case is the one illustrated in Figure 1:
(a) the first �q[d

agents specify their preferences sin-
cerely, and (b) the � th agent sees their ratings and gives
the rating that maximizes her own expected utility.8 We
defined for each setting a mechanism manipulated average:
Given the true types of the agents, it generates exactly the
same outcomes that would be generated if the � th agent
manipulated in the way just described. We would expect
this mechanism to yield worse results than the other mech-
anisms according to some criteria; but even so it is of inter-
est to determine how much worse the results really are in a
particular setting.

Median For two agents, this mechanism simply chooses
one of the two specified ratings randomly with a probability
of 0.5 and takes that rating as the outcome. It is easy to see
that this mechanism is nonmanipulable for any utility func-
tion that fulfills the assumption specified at the beginning
of 4.1. For concreteness, the mechanism will be called the
“coin flip” mechanism when only two agents are involved.

For three agents, the median takes as the outcome a rating
“in the middle” (i.e., such that one other rating is equal or
higher and the remaining rating is equal or lower). It can be
checked that this mechanism is likewise nonmanipulable. It
is also deterministic, symmetric, and reasonably familiar.
Its more general definition is applicable to any number of
agents (though with an even number of agents a random
choice between the two “middle” outcomes is required if
they are not equal).

5 Results

Instead of presenting the results of the computational ex-
periments as empirical results, we will discuss them in
terms of general concepts and principles, referring to the
data as concrete illustrations. Quantitative results that can-
not be understood in this way should be viewed as illus-
trations of phenomena that can arise with some particu-
lar parameter settings (e.g., the fact that the manipulated-
averaging mechanism performs competitively in some of
the settings presented below). Accordingly, we do not
present the results of statistical tests.

8Note that cases where more than one agent manipulates do
not necessarily lead to outcomes that are farther away from the
outcome yielded by truthful specification: For example, two
agents might distort their ratings in opposite directions, giving rise
to the same average rating as in the case of truthful specifications.

Table 1. Properties of mechanisms in settings with 2 agents
and 7 outcomes.
(Each number shows the expected value of (a component of) the
objective function for a particular mechanism. See also the expla-
nation in the text.)
 Generated Hand−Crafted
Criterion For Utility For Utility

+ Equity
Average Average

(Manipulated)
Coin Flip

Linear Utility:
Utility −0.82 −0.83 −0.82 −0.82 −0.82
Equity −1.49 −0.88 −0.50 −0.99 −1.63
Sum −2.30 −1.71 −1.32 −1.80 −2.45

Concave Utility:
Utility −1.50 −1.51 −1.24 −1.55 −2.23
Equity −2.09 −1.78 −0.90 −2.09 −4.47
Sum −3.59 −3.29 −2.14 −3.65 −6.70

Convex Utility:
Utility −0.42 −0.48 −0.51 −0.47 −0.42
Equity −0.84 −0.49 −0.29 −0.54 −0.84
Sum −1.25 −0.97 −0.80 −1.02 −1.25
 det

5.1 Two Agents, Seven Outcomes

Table 1 shows the results for the mechanisms for 2 agents
and 7 outcomes, which were constrained to be symmetric.9

The first three lines of results can be read as follows: Using
the linear utility function, we generated two mechanisms,
the first one maximizing utility and the second one maxi-
mizing the sum of utility and equity. For each mechanism,
the table shows the expected value of utility, equity, and
their sum, so that any tradeoffs between the criteria can be
seen. The three right-hand columns show the correspond-
ing results for the three hand-crafted mechanisms. The
symbol det below the results for a generated mechanism
indicates that it is deterministic; this is the case for only
one of the mechanisms in this table.

5.1.1 Linear Utility Function

Looking first at the results for the linear utility function,
we see that all mechanisms yield the same total expected
utility—understandably, given the nature of the utility func-
tion (cf. 4.1).10 The mechanism that was optimized for
utility + equity manages to achieve much greater equity
without sacrificing utility. But note that the canonical av-
eraging mechanism (under the assumption of no manipula-
tion) does even better in terms of equity; that is, because

9When interpreting these results, one should bear in mind that
we are assuming a situation in which the second agent may be
aware of the rating given by the first agent; cf. Section 2.

10Differences of just .01 should not be interpreted, since they
can arise through rounding errors.

of the need to ensure nonmanipulability, the automatically
designed mechanism cannot achieve as precise a balance
between the preferences of the two agents as averaging can.

If Agent 2 manipulates the averaging mechanism, the aver-
age equity is slightly worse than for the best automatically
designed mechanism. The amount of equity involved in
this difference is the amount that arises when the outcome
is 0.11 units closer to the preference of one agent than to
that of the other agent. (In the corresponding comparison
for uniform prior expectations about the agents’ types, a
similar pattern arises, but the difference is only 0.04 units
of equity.) So the question arises here whether this “worst
case” is sufficiently bad to justify the use of an unfamiliar
nondeterministic outcome selection mechanism.

The coin-flip mechanism does poorly in terms of average
equity, because it always satisfies one agent completely at
the expense of the other one (unless they happen to agree).

5.1.2 Concave Utility Function

Turning to the results for the concave utility function, we
see that with the two automatically generated mechanisms
a considerable gain in equity can be achieved without loss
in utility. The relative superiority of non-manipulated av-
eraging is greater here than it was with the linear utility
function, partly because in this case averaging can improve
utility as well as equity.

5.1.3 Convex Utility Function

With the convex utility function, the canonical coin-flip
mechanism achieves the maximum possible utility—as
does any other mechanism that ensures that at least one
agent’s preference is fully satisfied. One of these other
mechanisms is generated automatically when utility is
maximized: Although the performance of the leftmost
mechanism at the bottom of the table is identical to that
of the coin-flip mechanism, inspection of its probabilities
reveals many seemingly arbitrary entries like 0.9594 and
0.2202. The same statement is true with uniform priors,
and also with 5 possible outcomes (Table 2). It would not
be straightforward to reformulate the optimization problem
in such a way that only the more comprehensible probabil-
ities of 0.0, 0.5, and 1.0 emerged. So this is a case where
desirable properties like familiarity and robustness can be
achieved only if the automatic mechanism generator is sup-
plemented with human insight.

As the results for the two generated mechanisms illustrate,
with this type of utility function there is inevitably a trade-
off between total utility and equity; so we can no longer
gain equity at no cost simply by specifying the optimiza-
tion problem carefully; instead, we have to think about the
relative importance of utility and equity in the specific ap-
plication scenario.

Table 2. Properties of mechanisms in settings with 2 agents and 5 outcomes.
(Explanation in text.)

 Generated Hand−Crafted
 For Utility For Utility+ Equity
Criterion Sym − Sym + Sym − Sym + Average Average

(Manipulated)
Coin Flip

Linear Utility:
Utility −0.59 −0.59 −0.60 −0.60 −0.59 −0.59 −0.59
Equity −0.93 −1.12 −0.60 −0.60 −0.45 −0.70 −1.18
Sum −1.52 −1.70 −1.21 −1.21 −1.04 −1.28 −1.76

Concave Utility:
Utility −0.83 −0.83 −0.83 −0.83 −0.71 −0.83 −1.19
Equity −1.12 −0.89 −0.87 −0.87 −0.57 −1.06 −2.38
Sum −1.94 −1.72 −1.70 −1.70 −1.28 −1.88 −3.56
 det sym

Convex Utility:
Utility −0.33 −0.33 −0.38 −0.38 −0.39 −0.37 −0.33
Equity −0.67 −0.67 −0.37 −0.37 −0.30 −0.43 −0.67
Sum −1.00 −1.00 −0.76 −0.76 −0.69 −0.80 −1.00

5.2 Two Agents, Five Outcomes

In the settings with 2 agents and only 5 outcomes (Table 2),
it was not computationally necessary to restrict the auto-
matically designed mechanisms to being symmetric. We
can therefore see here whether the mechanisms generated
without the symmetry constraint (in the columns labeled
“Sym –”) are in any respect better than those generated
with the symmetry constraint (“Sym +”). Although only
1 of the 6 mechanisms generated automatically without the
symmetry constraint turned out to be symmetric (the one
labeled “det sym”), the table reveals no benefits that we
can attain by dropping the symmetry constraint in these set-
tings.

5.3 Three Agents, Five Outcomes

Looking at the case of 3 agents and 5 outcomes (Table 3),
we first note that there is now a tradeoff between utility
and equity for all three types of utility function. The three
mechanisms generated to optimize the sum of utility and
equity are slightly outperformed even by the manipulated-
averaging mechanism with respect to this criterion. (The
same pattern arises when uniform priors are assumed.) This
result reflects in part the fact that the impact of a single
manipulating agent on the outcome is more limited when
there are 3 agents instead of 2.

The three mechanisms generated so as to optimize only
utility are fully deterministic. (The same is true when uni-
form priors are used.) Because the optimization process
is itself partly nondeterministic, it is not obvious that any
mechanism generated in one of these three settings will be
deterministic. But the results do show that there exist de-

Table 3. Properties of mechanisms in settings with 3 agents
and 5 outcomes.
 Generated Hand−Crafted
Criterion For Utility For Utility

+ Equity
Average Average

(Manipulated)
Median

Linear Utility:
Utility −0.59 −0.77 −0.68 −0.70 −0.59
Equity −0.93 −0.65 −0.57 −0.71 −0.93
Sum −1.52 −1.42 −1.25 −1.41 −1.52
 det

Concave Utility:
Utility −0.96 −1.02 −0.87 −0.98 −1.00
Equity −1.35 −1.20 −0.87 −1.21 −1.72
Sum −2.30 −2.22 −1.73 −2.19 −2.72
 det

Convex Utility:
Utility −0.35 −0.48 −0.44 −0.45 −0.35
Equity −0.55 −0.39 −0.35 −0.42 −0.55
Sum −0.90 −0.87 −0.80 −0.87 −0.90
 det

terministic mechanisms that yield the maximum expected
utility—a fact that is of interest given the advantages of de-
terministic mechanisms discussed in Section 3.

With the convex utility function, the mechanism generated
to optimize overall utility is exactly the median mechanism.
So in this case, the linear solver comes up with a mecha-
nism which is not only optimal but also deterministic, fa-
miliar, and robust. (The same statement applies with 4 out-
comes and with uniform priors.)

Table 4. Properties of mechanisms in settings with 3 agents
and 4 outcomes.
 Generated Hand−Crafted
Criterion For Utility For Utility

+ Equity
Average Average

(Manipulated)
Median

Linear Utility:
Utility −0.38 −0.41 −0.42 −0.45 −0.38
Equity −0.68 −0.65 −0.54 −0.57 −0.68
Sum −1.06 −1.06 −0.96 −1.02 −1.06
 det

Concave Utility:
Utility −0.54 −0.59 −0.49 −0.53 −0.54
Equity −0.97 −0.77 −0.68 −0.74 −1.00
Sum −1.51 −1.36 −1.17 −1.27 −1.54
 det det

Convex Utility:
Utility −0.25 −0.25 −0.28 −0.30 −0.25
Equity −0.43 −0.43 −0.36 −0.37 −0.43
Sum −0.68 −0.67 −0.64 −0.67 −0.68
 det det

5.4 Three Agents, Four Outcomes

For the settings with 3 agents and 4 outcomes, it was again
possible to drop the symmetry constraint for half of the
generated mechanisms. Nonetheless, each of these poten-
tially asymmetric mechanisms turned out to be not only
symmetric but also strictly identical to the corresponding
mechanism generated under the symmetry constraint. (The
same is true when uniform priors are assumed.) Therefore,
Table 4 does not distinguish between mechanisms gener-
ated with and without the symmetry constraint.

We see that the tendency of the mechanisms generated for
3 agents to be deterministic is even stronger than it was
with 5 outcomes. (The one nondeterministic mechanism
contains a number of probabilities of 0.5; when uniform
priors are assumed, all of the corresponding mechanisms
are deterministic.)

On the whole, the mechanisms generated for 3 agents tend
to rate better in terms of the acceptability criteria of sym-
metry, determinism, familiarity, and robustness. One way
of viewing this tendency is in terms of overfitting in the
case of 2 agents: With only 2 agents, there tend to be many
different mechanisms that satisfy the constraint of nonma-
nipulability. The linear solver therefore often finds a solu-
tion with apparently arbitrary properties that happens to be
optimal for the specific setting in question.

6 Conclusions

Even these limited examples of the application of AMD
have illustrated some of the flexibility and power of the
AMD approach. They also highlight some of the factors
that need to be taken into account when AMD is applied

in a particular setting. Although the generation of spe-
cific mechanisms is indeed automated, the method does not
eliminate the need for careful judgment and analysis, espe-
cially in the case of mechanisms that (a) will be used re-
peatedly and (b) need to be accepted by the humans who
are somehow involved in the aggregation process.

We have seen that it is often possible to achieve one or more
of the desirable properties of symmetry, determinism, fa-
miliarity, equity, and robustness without sacrificing other
desirable properties; in other cases, tradeoffs arise which
call for judgments about priorities in the particular applica-
tion scenario. Making well-founded decisions about these
tradeoffs may require performing quantitative comparisons
such as the ones described here.

In some cases, the best choice may be a mechanism that
falls outside of the range of automatically generated non-
manipulable mechanisms. For example, a conference pro-
gram chair may decide, after looking at analyses such as
those presented above, that it is reasonable to continue us-
ing an averaging mechanism as a way of summarizing re-
viewers’ ratings; but he or she might decide to eliminate
the lowest rating category if it seems to be used relatively
frequently for (perhaps unconscious) manipulation. (This
move would be similar to the transition from 5 outcomes to
4 outcomes shown in Tables 3 and 4, respectively.) Even in
cases of this sort, automatically generated mechanisms can
serve as useful standards of comparison, in that they show
what could in principle be achieved with strictly nonmanip-
ulable mechanisms.

Acknowledgments

This research was supported by the German Ministry of
Education and Research (BMB

f
F) under grant 01 IW 001

(project MIAU). Valuable comments on an earlier draft
were made by Vincent Conitzer, but the responsibility for
any flaws in this final draft remains with the authors.

References

[1] Kenneth J. Arrow. Social Choice and Individual Val-
ues. Wiley, New York, 2nd edition, 1963.

[2] Vincent Conitzer and Tuomas Sandholm. Complex-
ity of mechanism design. In Adnan Darwiche and
Nir Friedman, editors, Uncertainty in Artificial Intel-
ligence: Proceedings of the Eighteenth Conference,
pages 103–110. Morgan Kaufmann, San Francisco,
2002.

[3] Vincent Conitzer and Tuomas Sandholm. Ap-
plications of automated mechanism design. Un-
published manuscript, available from http://www-2.
cs.cmu.edu/ r conitzer/, 2003.

[4] Anthony Jameson, Stephan Baldes, and Thomas
Kleinbauer. Enhancing mutual awareness in group
recommender systems. In Bamshad Mobasher
and Sarabjot S. Anand, editors, Proceedings of
the IJCAI 2003 Workshop on Intelligent Techniques
for Web Personalization. AAAI, Menlo Park, CA,
2003. Available from http://maya.cs.depaul.edu/
r mobasher/itwp03/schedule.html.

[5] Louis Kaplow. Horizontal equity: New measures, un-
clear principles. Technical Report 7649, National Bu-
reau of Economic Research, Cambridge, MA, 2000.

[6] Joseph F. McCarthy and Theodore D. Anagnost. Mu-
sicFX: An arbiter of group preferences for computer
supported collaborative workouts. In Proceedings of
the 1998 Conference on Computer-Supported Coop-
erative Work, pages 363–372, 1998.

[7] Noam Nisan and Amir Ronen. Algorithmic mech-
anism design. Games and Economic Behavior,
35:166–196, 2001.

[8] Jeffrey S. Rosenschein and Gilad Zlotkin. Rules of
Encounter: Designing Conventions for Automated
Negotiation Among Computers. MIT Press, Cam-
bridge, MA, 1994.

[9] Yoav Shoham and Moshe Tenenholtz. Fair imposi-
tion. In Bernhard Nebel, editor, Proceedings of the
Seventeenth International Joint Conference on Arti-
ficial Intelligence, pages 1083–1088. Morgan Kauf-
mann, San Francisco, CA, 2001.

[10] Hal Varian. Mechanism design for computerized
agents. In USENIX Workshop on Electronic Com-
merce, 1995.

	Introduction
	Nonmanipulable Aggregation of Preferences
	Examples of Application Settings

	Automated Mechanism Design
	Desirable Properties of Mechanisms
	Method
	Settings
	Hand-Crafted Mechanisms

	Results
	Two Agents, Seven Outcomes
	Linear Utility Function
	Concave Utility Function
	Convex Utility Function

	Two Agents, Five Outcomes
	Three Agents, Five Outcomes
	Three Agents, Four Outcomes

	Conclusions

