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Abstract

Algorithms for learning the conditional proba-
bilities of Bayesian networks with hidden vari-
ables typically operate within a high-dimensional
search space and yield only locally optimal so-
lutions. One way of limiting the search space
and avoiding local optima is to impose quali-
tative constraints that are based on background
knowledge concerning the domain. We present a
method for integrating formal statements of qual-
itative constraints into two learning algorithms,
APN and EM. In our experiments with synthetic
data, this method yielded networks that satisfied
the constraints almost perfectly. The accuracy of
the learned networks was consistently superior to
that of corresponding networks learned without
constraints. The exploitation of qualitative con-
straints therefore appears to be a promising way
to increase both the interpretability and the accu-
racy of learned Bayesian networks with known
structure.

If you don’t know where you’re going, you might
wind up someplace else. — Yogi Berra

1 INTRODUCTION

The following problem often arises when we use standard
learning algorithms to learn the conditional probabilities of
a Bayesian network (BN) with known structure and one or
more hidden variables:1 We have some fairly clear ideas
about the qualitative relationships that must exist among
the variables in the BN, and we are mainly interested in
determining the quantitative relationships. But the learning
algorithm uses no knowledge of qualitative relationships,
so it “winds up someplace else”: It produces a BN that may

1For an overview of the general problem of learning Bayesian
networks from data, see, e.g., Heckerman (1998).

fit the data fairly well but that noticeably fails to exhibit the
qualitative relationships that we expected. Such a network
can be awkward to use and to explain to others, since it
regularly violates natural expectations.2 Moreover, we
may suspect that a more accurate network could have been
found which did fulfill our qualitative expectations.

Binder, Koller, Russell, and Kanazawa (1997, Section 7),
after introducing the APN algorithm for learning BNs with
hidden variables, proposed that it ought to be possible to
guide the learning process by specifying qualitative con-
straints that the resulting network should satisfy. For ex-
ample, a domain expert might state: “If the value of a vari-
able � increases, then the value of its child variable � also
increases”. The purpose of the present paper is to work out
and implement this proposal.

Our basic method for exploiting such constraints is to de-
fine a term within the network scoring function that reflects
the overall extent to which qualitative constraints are vio-
lated by an intermediate learned network. If such a network
rates poorly according to this criterion, the learning algo-
rithm should tend to move on to alternative networks that
rate better.

Another related approach, which goes a step further in the
same direction as our approach, is to specify in advance
specific types of functions describing the nature of the (un-
certain) relationships between particular variables in the
BN; and to apply learning techniques that are appropriate
for these functions. For example, a linear relationship be-
tween a child and its parents could be learned using linear
regression (see, e.g., Musick, 1996; Binder et al., 1997).
But in many cases, it is not clear what specific functional
relationship holds, even though it is clear that there must be
a monotonic relationship of the sort mentioned above.

2 Some discrepancies may simply be due to the fact that the
learning algorithm has in effect labeled the states of a variable
differently than we expected, e.g., assigning to the state “On”
the probabilities that we would expect for “Off”, and vice-versa.
These deviations from expectations may be easily correctible; but
in practice they do not account for all of the violations of qualita-
tive expectations.
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The paper is organized as follows: After briefly review-
ing the basic concepts and notation involved in the learning
of Bayesian networks, we present a general conceptualiza-
tion of how qualitative constraints can figure in the learning
process. In Section 3 we then show how qualitative con-
straints can be suitably formalized. Section 4 shows how
these ideas can be applied to two important learning algo-
rithms for BNs, the APN and EM algorithms. Section 5
presents and discusses the results of tests of our approach
in which synthetic data were used.

2 LEARNING BAYESIAN NETWORKS
WITH KNOWN STRUCTURE

2.1 BAYESIAN NETWORKS

Formally, a BN �����
	����� consists of two components.3

The first one is a directed acyclic graph 	 that represents
the causal independencies that hold in the domain to be
modeled by � . Nodes represent random variables and di-
rected links between nodes are commonly interpreted as
causal influences between these variables. We restrict our
attention in this article to BNs in which all of the variables
are discrete.

BNs are characterized by the following independence as-
sumption: Given the states of its parents, a node is inde-
pendent of all its non-descendents in the BN. The second
component of a BN is a vector  of conditional probability
tables (CPTs) �� that represent the (uncertain) relationships
between nodes and their parents. A node’s CPT consists of
conditional probabilities for each state of the node condi-
tioned on its parents’ state configuration. A BN � repre-
sents a joint probability distribution ��������������������� � over
the states of its variables !"� � �#�����������$����� . Exploiting
the independence assumption of BNs, the joint probability
distribution decomposes into a product of local conditional
probabilities:

�����#�%���������$��� �&� �'�)( � ����� � � *,+-��� � ���.� �'�/( �  � � (1)

The term *,+0�����1� represents the set of all configurations
of � � ’s parents, while  � is the CPT belonging to node� � . Therefore, 2�3�
��������������� � . 4 �65�7 �8����� � �9 �65 � *,+.�:� � �.�<;>= 7 ��� � �$�.�?��� 9 �@5 � ;�= 7 ��� � ��� stands for the
entry corresponding to the A th state of � � in  � when its
parents take on their B th configuration ;�= 7 �:� � � .
2.2 THE LEARNING PROBLEM

The general problem of learning the conditional probabili-
ties  of a BN � with known structure can be formulated

3Detailed treatments of the theoretical and mathematical basis
of BNs are given by, among others, Pearl (1988) and Castillo,
Gutierrez, and Hadi (1997).

as follows: Given a data set CD� �FE � ��������� E�G � of H train-
ing cases

E � , find a set of CPTs  that optimizes a certain
scoring function that describes the fitness of � with respect
to C . Every training case

E � is an assignment of states
for a subset of � ’s nodes. A common scoring function is
the likelihood ���1CI� J� of C with respect to  for a given
structure 	 . For computational convenience, the logarithm
of this function is commonly used:

K)L ���1CI� J�&�
GM �/( � K)L ��� E � � ��N� (2)

The vector  that maximizes this function (locally) repre-
sents a (locally) optimal set of CPTs, leaving out of con-
sideration any prior qualitative knowledge about the CPTs.
When a BN includes one or more hidden variables, it is in
general infeasible to compute exact solutions to this prob-
lem (see, e.g., Heckerman, 1998). Therefore, approxima-
tive algorithms such as the ones discussed in Section 4 are
used.

2.3 THE ROLE OF QUALITATIVE
CONSTRAINTS

Suppose now that we have asked a domain expert whether
the CPTs of the to-be-learned BN satisfy a particular set of
qualitative constraints O and that the expert has answered
“Yes”. How can we take this fact into account within the
framework implied by Equation 2?

One conceptualization would be that the expert has hereby
specified a prior probability distribution over the possible
values of  . But within the maximum-likelihood frame-
work, it is more appropriate to think in terms of the like-
lihood that the expert would answer “Yes” given various
possible states of reality—i.e., various extents to which the
constraints are really satisfied.

Concretely, suppose that we have defined a function
violation �
P��OQ� that indexes the extent to which the CPTs violate the constraints O : violation takes the value 0 if
there is no violation at all and some positive value other-
wise which increases with the seriousness of the violation.

Let us consider the likelihood that the expert answers “Yes”
as a function of violation �1R�SOT� . This likelihood should be
equal (or close) to 1 if there is in reality no violation; and
it should move toward 0 as the value of violation �
U��OT�
increases from its minimum of 0.

A computationally convenient function that meets these re-
quirements is the following one:

��� answer � yes � U��OT�&�IVNWYX��[Z]\_^ violation �1P��OQ�$�`�
(3)

Here, the positive weight \ determines how quickly the
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probability decreases from its maximum of 1 as the extent
of constraint violations increases from its minimum of 0.

We can now view the expert’s statement as a single—
but especially significant—“observation” that can be taken
into account along with the normal observations C in the
dataset. Accordingly, we can add the log-likelihood of this
“observation” to the right-hand side of Equation 2 to obtain
a modified likelihood of all observations:K)L ���1CI� ��aZb\_^ violation �1P��OQ�`� (4)

The aim is now of course to find a (local) maximum for this
log-likelihood. The term violation �1P��OQ� can be viewed
as a penalty term which will cause the search algorithm to
avoid solutions that violate the constraints, and the constant\ can be viewed as the weight of this penalty term.

The empirical results presented in Section 5 suggest that,
when the constraints O are in fact satisfied by the model
that generates the data, a solution will typically be found
for which the value of this term is (close to) 0.

It is clear that the function specified in Equation 3 is partly
arbitrary. Indeed, determining the actual probabilistic re-
lationship between constraint violations and expert judg-
ments would require empirical research, and it might be
impossible to find a useful domain-independent formula-
tion. The above account can therefore be seen as specifying
a possible scenario in which the penalty term in (4) can be
given a probabilistic interpretation. Its intent is to clarify
the relationship between the roles of the empirical data and
the expert’s judgment in guiding the search for a solution.

In order to be able to make use of (4), we have to answer
two main questions:

1. How can the violation function best be defined and
motivated for some useful class of constraints?

2. What algorithms can be used to find a (local) maxi-
mum of the scoring function of (4)?

The first question will be addressed in the next section and
the second question in the subsequent sections.

3 FORMALIZING QUALITATIVE
CONSTRAINTS

3.1 QUALITATIVE INFLUENCES

Within the framework of qualitative probabilistic networks
(Wellman, 1990), Druzdzel and van der Gaag (1995) give
formal probabilistic definitions of several types of quali-
tative relationships that can hold between nodes in a BN.
The authors of the latter work employed these definitions
in a method for combining different types of knowledge
for the specification of the CPTs for BNs. They did not
employ standard BN learning methods like the EM algo-
rithm or gradient-based methods. Our method can be seen

as an integration of parts of the method of Druzdzel and van
der Gaag (1995) with standard BN learning algorithms. In
this paper, we focus on the simple relationships that these
authors call qualitative influences; but our method can be
applied analogously to the more complex relationships that
they also deal with.

The concept of a qualitative influence is only applicable
if there is an ordering on the states of the nodes involved.
Without loss of generality, we define 9 � �Qc 9 �/d c ����� c9 � �%e for every node ��� with f�� discrete states that is in-
volved in a qualitative influence. A qualitative influence
is denoted by g&h�����i0�$��j�� , where k<l �%m ��Zn� describes
the quality (

m
or Z ) of a monotonic relationship between

a variable ��i and one of its children �oj . Two kinds of
qualitative influences exist: If a positive one holds, an in-
crease in the state of � i causes an increase (or at least no
decrease) in the state of � j . If the relationship is negative,
an increase in � i ’s state causes a decrease (or at least no
increase) in � j ’s state.

Somewhat more formally, a positive qualitative influencegap]�:��i0����jq� can be defined as follows: For any given
value of ��j , an increase in the value of �oi will not de-
crease the probability that the value of �#j is equal to or
greater than that given value.

Formally (cf. Druzdzel & van der Gaag, 1995): For all
states 9 jSr of ��j with sutwv and all distinct pairs of states9 i���� 9 i>5 of ��i such that xytzA and for all possible state
configurations { of � j ’s parents other than � i , the fol-
lowing inequality must hold:

������j}| 9 jSr�� 9 i����${,�0|~���:��j}| 9 jSry� 9 i>5���{P�`� (5)

In terms of the conditional probabilities for individual
states of � j , this definition yields a set of inequalities of
the following form:���M� (Rr ��� 9 j � � 9 i����${P�]| ���M� (�r ��� 9 j � � 9 i>5��${,�`� (6)

There exists one such inequality for each combination of an9 jSr such that sDt�v , a pair 9 i�� and 9 i>5 such that x]t~A ,
and a configuration { of the states of �oj ’s parents other
than ��i .4

Negative qualitative influences are defined analogously.

4Actually, for the unambiguous specification of a constraint,
we require only the inequalities that involve adjacent values of�n�

, i.e., where �����U��� , since the other inequalities are implied
by the transitivity of the relation � . But in cases where a con-
straint has been violated, the redundant inequalities allow us to
identify all of the values that are involved in the violation. As will
become clear below, it is then possible to adjust all of these values
simultaneously so as to eliminate the violation more quickly.
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3.2 DEFINITION OF A VIOLATION TERM

We can now see how to define a suitable index of the over-
all extent to which a given set of CPTs  violates a given
set of constraints O , when these constraints concern quali-
tative influences—i.e., how to define a violation function of
the type introduced in Section 2.3. Consider Inequality 6,
which is part of the mathematical description of a positive
qualitative influence of � i on � j . We can write this in-
equality more generally as follows:���M� (�r ��� 9 j � � 9 i��$��{P�PZ ���M� (�r ��� 9 j � � 9 i>5��${,�� �`� �(U� ���)��� �� e6���

|~��� (7)

For every violated positive constraint, there has to exist at
least one such inequality that is not satisfied—i.e., where
the difference on the left-hand side of the equation is neg-
ative. Analogously, violations of negative constraints lead
to values greater than 0.

A partial violation term corresponding to a single inequal-
ity can be defined as follows:

� h i�jr��@5$��  �
¡¢ £ Z � � h i�jr��@5$� � if k¤� m

and � � h i�jr��@5$� c �Y�� � h i�jr��65$� � if k¤�zZ and � � h i�jr��@5$� t¥�Y�� � otherwise � (8)

The total violation term violation �
P�SO�� is defined as the
sum of all of the relevant partial violation terms:

violation �1P��OQ�   � Mr§¦ �:¦ 5�¦ �Y¦ iP¦ j � h i�jr��@5$� � (9)

where k stands for the quality (
m

or Z ) of the constraint
corresponding to \ and ¨ . Note that, for each combination
of variables corresponding to the indices \ and ¨ , only one
quality k can exist, since it makes no sense to specify both
a negative and a positive influence for these two variables.

4 USING CONSTRAINTS IN LEARNING
ALGORITHMS

Having seen how to define the violation term required by
(4), we can address the problem of finding a (local) max-
imum of that expression. An analytic solution is not in
general available, but various iterative search methods have
been proposed. We will first discuss the use of the APN
method (Binder et al., 1997; Russell, Binder, Koller, &
Kanazawa, 1995), which can deal with the addition of the
constraint violation term in a straightforward way. We will
then turn to the EM method, with which dealing with the
constraint violation term is less straightforward.

4.1 BASIC APN

The adaptive probabilistic networks method (APN) is a
gradient-based algorithm for the learning problem formu-
lated in Equation 2.

The computation of new values �© for the CPT entries is
done by taking (small) steps in the direction that is deter-
mined by the gradient ª K)L ���1CI� J� of the log-likelihood
function that constitutes the right-hand side of Equation 2: © �? m¬« ª K/L ���
C?� J�`� (10)

where
«

is a step-size parameter.

As was shown by Binder et al. (1997, Section 5.1), the par-
tial derivatives of the log-likelihood function can be com-
puted as follows:y®�65�7 K/L ���
CI� J�&�

GM � ( � ��� 9 �@5 �:;>= 7 �:� � ��� E � ����4��@5�7 � (11)

where the superscript
®

indicates that the gradient is still
unprojected; that is, it has to be projected onto the con-
straint surface defined by ¯ 5 4 ��@5�7 �°v , so that the new val-

ues 4 ��65�7 will continue to obey this fundamental constraint
on the entries of any CPT. After the projection has been
performed (as described by Binder et al., 1997, Section 4),
the resulting gradient vector ª K/L ���
C?� J� can be used in
Equation 10. Binder et al. (1997, Section 5.3) and Russell
et al. (1995, Section 7) present empirical results concern-
ing the effectiveness of this method for learning the CPTs
of BNs with hidden variables.

4.2 TAKING CONSTRAINTS INTO ACCOUNT
WITH APN

To use APN with the extended scoring function of (4), we
need to compute a slightly more complex gradient:ª K/L ���
CI� J�,Z<ªb\_^ violation �
U��OT�`� (12)

The partial derivatives for the first term are of course the
ones specified in Equation 11. For the second term, we can
write: y®�@5�7 \_^ violation �
U�SOQ�&�I\_^N± �@5�7 �
U��OT�N� (13)

Each ±%�@5�7��
P�SOQ� is the partial derivative of the violation
function with respect to the CPT entry 4��@5�7 . This partial
derivative is easy to compute, as can be seen from Inequal-
ity 7: Each partial violation term is a linear function of CPT
entries, with each entry occurring at most once and having
a coefficient of either

m v or Z}v . The only partial violation
terms that contribute to the total violation term are the ones
that correspond to inequalities that are not fulfilled at the
current point  in the search space.
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It is straightforward to show that ±��@5�7��
P�SO�� can be com-
puted as follows:±%�65�7 �1P��OQ�.�¥±>²�65�7 �1U��OT�,Z³± p�@5�7 �
P��OQ�`� (14)

where ±>²�@5�7 �
U��OT� is the number of unfulfilled inequalities

which suggest that 4 �65�7 ought to be lower and ± p�65�7 �1U��OT� is
the number of such inequalities that suggest that 4 �65�7 ought
to be higher. It is therefore intuitively plausible, as well
as mathematically sound, to add the gradient specified by
Equation 13 to the one specified by Equation 11, as follows:y®�65�7 �

GM � ( � ��� 9 �@5´�:;>=Y7µ�:������� E � ��J�4 �@5�7 Z³\I^N±%�65�7 �1P��OT�`�
(15)

As with normal APN, it is still necessary to project this
unprojected gradient onto the constraint surface defined by¯ 5 4 ��65�7 �°v before using it to compute the next step.5

We will now see how the log-likelihood functions in (2) and
(4) can also be handled with the powerful and frequently
used EM algorithm.

4.3 BASIC EM

The Expectation Maximization or EM algorithm (Demp-
ster, Laird, & Rubin, 1977), when applied to our problem of
maximizing the log-likelihood in Equation 2, proceeds as
follows: After  has been initialized to some vector of start-
ing values, the algorithm performs two steps iteratively:
The first step, called the expectation- or E-step, computes,
for each

E � in C , an expectation for the value(s) of the hid-
den variable(s) in

E � . (This computation involves, for eachE � , instantiating the observable nodes of a BN with CPTs
corresponding to  and evaluating this BN to derive a be-
lief about each hidden variable.) The result of this step is a
hypothetical dataset C<© which includes, in addition to the
observed values of the observable variables, expectations
concerning the hidden variables.

The second step, which is called the maximization- or M-
step, computes new CPT values �© which (locally) maxi-
mize the total log-likelihood of this hypothetical dataset—a
task that is much easier than maximizing the log-likelihood
of the real dataset (cf. Equation 2). These new values �©
always yield a log-likelihood of the real dataset that is at
least as high as the one produced by the previous values  .

For our particular problem of learning the CPTs of BNs
with hidden variables, the E-step and the M-step taken to-
gether yield a simple update rule (see, e.g., Castillo et al.,

5In addition to the normalization mentioned above, these
methods have to take into account the fact that ¶ �· ¸�¹§ºQ» ¼%½ ��¾ . This
can be done by not allowing the learning algorithm to leave this
search space. This may lead to situations where the learning pro-
cedures tend to follow the boundaries of the search space.

1997, p. 515):

4 ��@5�7 ��¿ÁÀ�Â Ã �@5�7�Ä¿ À Â Ã �/7 Ä � (16)

Here, ¿ÁÀ�Â Ã �Å7FÄ is the expectation of the number of obser-
vations in the dataset in which the parents of the node ���
take on their B th configuration ;�= 7µ������� . ¿ÁÀ�Â Ã �@5�7�Ä is the
expectation of the number of such observations for which��� takes on its A th value 9 �@5 . The latter expectation can be
computed according to Equation 17:

¿ÆÀ>Â Ã �65�7qÄJ�
GM � ( � ��� 9 �65��
;>=Y7Y�����1��� E � ��J�`� (17)

while the former expectation is found through summation
over A .

The update rule in Equation 16 is applied repeatedly until it
converges on a (local) optimum for Equation 2, a solution
which represents a maximum-likelihood estimate of the set
of CPT entries.

4.4 TAKING CONSTRAINTS INTO ACCOUNT
WITH EM

How can EM be used to maximize the extended scoring
function (4) instead of the simple log-likelihood of the ob-
served data? The most elegant approach would be to apply
the expectation and maximization steps directly to the scor-
ing function (4) so as to derive a modified update rule that
could be used instead of (16). Unfortunately, the general
EM approach is not equally easy to apply to all possible
scoring functions; in particular, an attempt to apply it to
the scoring function in (4) yields an interrelated set of non-
linear equations for which we did not find an analytic solu-
tion. The further pursuit of this approach therefore remains
a matter for future research, which might, for example, con-
sider the use of somewhat different scoring functions.

Because of the generally desirable properties of the EM ap-
proach, it seems worthwhile to pursue a theoretically less
elegant modification of it which is capable of dealing with
the extended scoring function of (4), albeit in a heuristic
manner. Similarly, other researchers have developed vari-
ants of EM which are theoretically less justifiable than the
pure form but which can be shown in practice to perform
well, at least for some types of problems (see, e.g., Ortiz
& Kaelbling, 1999; Bauer, Koller, & Singer, 1997). Like
some of these methods, our approach combines EM with
gradient ascent.

The basic idea is to alternate between two types of updates
of the vector  of CPT entries:

1. the standard EM update given by (16), which moves
to an intermediate solution which yields a higher log-
likelihood for the observations;
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2. a gradient-based update which uses the gradient spec-
ified in Equation 13 and which aims only to decrease
the extent of constraint violations that are found at the
solution J© that results from the EM update.

This results of applying this method are theoretically less
predictable than the results for normal EM—or indeed for
many of the variants of EM—, since the quality of the so-
lution cannot be guaranteed to increase with each iteration:
In principle, an EM update that increases the log-likelihood
slightly can lead to a drastic decline in the extent to which
the constraints are satisfied; and vice versa for a gradient-
based update that slightly reduces constraint violations. On
the other hand, if the specified constraints really do hold,
the two goals of maximizing log-likelihood and maximiz-
ing constraint fulfillment are generally compatible; hence
we would not expect the two types of update to work con-
tinually at cross-purposes.

The performance of this hybrid algorithm in practice will
be investigated in the next section.

5 TEST OF THE METHOD

We conducted empirical tests using both of the two pro-
cedures described in the previous section. Since the initial
results were qualitatively roughly similar, we conducted the
most systematic tests for the modified EM procedure, be-
cause this procedure is more in need of empirical valida-
tion, given its partly heuristic nature.

Two network structures were used for the tests. Since theo-
retical interpretability is one of the motivations for the use
of qualitative constraints, the first network structure comes
from a domain in which the interpretability of a single hid-
den variable is important. The second—abstract—example
demonstrates the feasibility of our approach for network
structures involving more than one hidden variable.

5.1 EXAMPLE NETWORKS

Our first example BN, shown in the top part of Figure 1,
could be used as a basis for an influence diagram for a
hypothetical assistance system Ç that presents sequences
of spoken instructions to the user È (as, for example, a
speech-based help system might do).6

An adaptation decision that Ç has to make is whether to
present a given set of instructions in a stepwise manner (i.e.,Ç presents its instructions one by one, allowing È to exe-
cute each one before presenting the next one) or in a bun-
dled manner (all instructions are presented at once before È
starts to execute the first one). One result of an experiment

6Explanations of the individual variables, along with the raw
data from an experiment in this domain that involved 24 subjects,
are available from http://w5.cs.uni-sb.de/ É ready/. See also Jame-
son, Großmann-Hutter, March, and Rummer (2000).
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Figure 1. Structures of BNs Used for Testing.

(Nodes within dashed boxes correspond to hidden variables. For
each of the arrows labeled � (or Ê ), a positive (or negative) qual-
itative influence was postulated. The number in parentheses for
each node is the number of states of that node.)

in this domain was that stepwise presentation reduced the
number of errors È made but led to longer execution times.

We specified four qualitative influences involving the hid-
den variable COGNITIVE LOAD: Both psychological re-
search and common sense led us to expect that the three
parent variables of COGNITIVE LOAD would influence it
positively. Moreover, higher COGNITIVE LOAD should in-
crease the likelihood of ERROR IN PRIMARY TASK?.

The lower half of Figure 1 shows a second example BN. We
offer no theoretical interpretation for it, but it enables us to
test the effectiveness of the learning methods for network
structures that include more than one hidden variable.

5.2 PROCEDURE

Specification of original BNs. We first manually specified
a plausible BN for each structure just described, each of
which satisfied the specified qualitative constraints. These
original BNs were assumed for the rest of the evaluation to
model the true causal relationships perfectly.

Generation of synthetic learning data. We then gener-
ated a sample of 1,000 learning cases using the first net-
work structure and a sample of 200 cases with the second
one. (Of course, the values generated for the hidden vari-
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ables were not recorded.) We chose the numbers of 1,000
and 200 because (a) in the first domain a number of 1,000
seems to represent a realistic number of observations that
one might be able to obtain and (b) we wanted to demon-
strate the feasibility of the proposed method in the case of
sparse data.

Learning, starting with different initial BNs. For each of
the two structures, we generated ten BNs with randomly as-
signed initial values for the CPT entries. Each of these BNs
was used as a starting point for two learning tasks: one us-
ing the standard EM algorithm and one using the extended
algorithm that took the specified qualitative constraints into
account.7 In all cases, the learning procedure was termi-
nated after 100 iterations.

Evaluating the learned BNs. To evaluate the accuracy of
the learned BNs, we used the two original BNs to gener-
ate two sets of 10,000 and 5,000 test cases, respectively
(again, without recording any values for the hidden vari-
ables). Each of the learned BNs was evaluated with respect
to its average negative log-likelihood per case. In addition,
the criterion of average quadratic loss per case was applied
to the nodes ERROR IN PRIMARY TASK? and G in the first
and second structures, respectively. (For both quality mea-
sures, lower values indicate better results.)

5.3 OVERALL RESULTS

The left-hand side of Figure 2 shows the main results for
each of the 20 BNs that were learned for each network
structure.

Violation of constraints. The narrow bars show that all of
the BNs learned without constraints exhibited substantial
violations even after 100 iterations. (The maximum possi-
ble values of violation were 63 and 54 for Network Struc-
tures 1 and 2, respectively.)8 By contrast, the violation
scores for the constrained BNs are mostly invisible in the
graph because they are essentially zero.

Fit to the test data (overall). In the larger histogram for
each network structure, the baseline shows the fit to the test
data of the original BN that generated the test data. As one
would expect, the fit of the learned BNs to the test data was
worse than this baseline in every case; the fit is shown by
the bars that project above the baseline. Looking at first
only at these bars above the baseline and comparing the
black bars with the gray ones, we see that the constrained
BNs came closer to the baseline in 8 of the 10 cases with
Network Structure 1 (9% closer in terms of the average dif-

7For the latter procedure, the violation weight Ë (Equation 13)
was set to 2.0. Moreover, the vector of Ì · ¸�¹ s used in the gradient
step was rescaled so that the absolute size of its largest component
was equal to the absolute size of the largest component of the
preceding EM step.

8These quantitative values need to be interpreted with some
caution, for the reason mentioned in Footnote 2.

ference). With Network Structure 2, the constrained BNs
were closer to the baseline in all 10 cases, the distance be-
ing 57% shorter on the average.

Fit to the test data (selected variables). With regard to
the quadratic loss for the variables ERROR IN PRIMARY

TASK? and G (not shown in Figure 2), the constrained
BNs likewise fit the data consistently better than the uncon-
strained BNs. In fact, for the two network structures they
come 50% and 66% closer to the relevant baseline, respec-
tively, than the corresponding unconstrained BNs. Note
that the criterion variables used here are directly involved
in the specified constraints.

Overfitting. The fit of the learned BNs to the learning data
indicates how much overfitting occurred during the learn-
ing process. Each of the learned BNs fit the learning data
better than the original generating BN did. These results
are shown by the bars that project below the baseline. We
see that the unconstrained BNs overfit the learning data to a
consistently greater extent than the constrained BNs. Thus,
one advantage of using constraints seems to be that they
offer a natural way to limit overfitting.

5.4 THE TIME COURSE OF LEARNING

To get a clearer picture of the reasons for the success of the
learning procedure with constraints, we can examine the
time course of the learning process for one typical BN for
each network structure (see the right-hand side of Figure 2).

Elimination of constraint violations. In both cases, the
procedure with constraints essentially eliminated the con-
straint violations within the first few iterations. (The val-
ues of the violation variable are not shown for the individ-
ual unconstrained BNs, since there was no typical pattern,
aside from the fact that there were almost always substan-
tial violations.)

Evolution of the fit to the test data. Looking at the two
uppermost curves in each graph, we can distinguish two
phases of the learning process. In the first phase, which typ-
ically lasts less than 10 iterations, the unconstrained BNs fit
the test data better. Then, after a crossover point, the con-
strained BNs show a consistently better fit. This pattern can
be understood in terms of the basic properties of the mod-
ified EM algorithm (Section 4.4): Initially, when there are
substantial constraint violations, the normal EM steps alter-
nate with gradient-based steps that serve solely to reduce
constraint violations, perhaps at the expense of fit to the
data. It is only after reaching a region of the search space
in which the constraints are fulfilled that the algorithm can
perform updates that are determined primarily by the goal
of improving the fit to the data.

Avoidance of overfitting as a key advantage. With the
two individual BNs shown on the right-hand side of Fig-
ure 2, the optimal termination point for the learning pro-
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Figure 2. Results of the Tests With Synthetic Data.

(Black and gray bars and curves show results for BNs learned with and without constraints, respectively. The two uppermost learning
curves in the graphs on the right show the fit to the test data, while the two curves below them show the fit to the learning data. The other
aspects of the figure are explained in the text.)

cedure occurred somewhere between the 5th and the 10th
iterations—whether constraints were used or not. In fact,
with Network Structure 2, the unconstrained EM algorithm
could have attained the best fit of all if it had known ex-
actly where to terminate. On the other hand, terminating
too early or too late without constraints could lead to signif-
icant loss of accuracy. In sum, the advantage of constraints
in terms of fitting the data may not be that they yield a de-
gree of fit that is unattainable without the specification of
constraints. Rather, they appear to ensure a roughly equally
good fit to the test data no matter when the learning process
is terminated, as long as it is not terminated very early.

A certain amount of overfitting does seem to occur even
with constraints, as is shown by the uppermost black curve
for Network Structure 1. It will be interesting to inves-
tigate whether this overfitting mainly concerns the CPTs
of variables for which no qualitative constraints have been

specified.

6 CONCLUSIONS

While fitting test data is an important goal, it should be
remembered that the elimination of constraint violations
would in itself constitute an adequate motivation for the
use of procedures such as the ones proposed here. Theoret-
ical interpretability is a key goal in the application of BN
learning techniques in many real-world systems that make
use of BNs with hidden variables. Indeed, theoretical in-
terpretability and explainability are important strengths of
Bayesian networks generally.

Systems that use theoretically interpretable BNs may in
some situations be better accepted by users. In particular,
such a system’s reasoning and decision making can be ex-
plained to users without the risk that the system will behave
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Table 1. Summary of Contributions and Possible Extensions

Contribution Possible Extensions

A general conceptualization of the problem of incorporating prior
qualitative knowledge into the process of searching for a Bayesian
network that fits a given dataset of observations.

Application of this conceptualization to other types of learning
problems.

A definition of a quantitative index of the extent to which a given
BN violates specified qualitative constraints, based on work of
Druzdzel and van der Gaag (1995).

Similar definitions for other types of qualitative constraints.

Specification and justification of adaptations of the basic APN and
EM methods in accordance with the above contributions.

Derivation of a more theoretically justifiable adaptation of EM;
adaptation of other search procedures, such as ELQ (Greiner,
Grove, & Schuurmans, 1997).

Demonstration, using two quite different network structures and
synthetic data, that the modified EM algorithm can learn BNs that
fulfill the constraints (almost) perfectly while fitting the data bet-
ter than the BNs learned by the unmodified algorithm.

Similar tests using larger networks and/or empirically collected
data; systematic manipulation of parameters such as the step size,
the weight of the violation term (Equation 4), and the proportion
of nodes for which constraints are specified.

in a way that is incompatible with the explanation given. In
the domain of our first network structure, we might for-
mulate an explanation like “The presence of a secondary
task increases the user’s cognitive load; and higher cogni-
tive load makes it more likely that the user will make an
error.”

Table 1 lists the contributions of the present paper and
some corresponding possible extensions. Although there is
clearly much that remains to be done, the results presented
here seem to indicate that this work is worth doing.
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