

2

Creating an Empirical Basis for Adaptation Decisions

Anthony Jameson Dep Barbara Großmann-Hutter Com

Department of Computer Science

Leonie March Department of Ralf Rummer Psychology

University of Saarbrücken, Germany

http://w5.cs.uni-sb.de/~ready/ (slides, etc.)

M IUI2000

Overview

General issue

IUIs often adapt their behavior

- to material being presented
- to properties of the situation
- to properties of the user

How can we help them make sound adaptation decisions?

Overview

- 1. Rule-based vs. decision-theoretic adaptation
- 2. Method for empirically based decision-theoretic adaptation
- 3. What to do when this method is infeasible?

4

	Contents																	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Introduction	1
	I າ
Contents	2
	0
Basic Concepts	5
Goodeeaptation?	5
Rule-Based Adaptation	6
Decision-Theoretic Adaptation	7
Experiment	
Everyday Example	
Experimental Setup	
Stepwise vs. Bundled Instructions	10
Variables in Experiment	11
Main Results	12
The Decision Mechanism	14
Learned Bayesian Network	14
Influence Diagram	17
Properties of the Learned Decision Mechanism	18
Fallbacks	19
Fallback 1: Modify the Model by Hand	19
Fallback 2: Collect Real Usage Data	21
Fallback 3: Do Analysis Without Data	22
Interactors Revisited	23
Conclusions	24
Conclusions	24
Conclusions	24

3

- -

Basic Concepts Good Adaptation?

Good day. You've reached my mobile communication center. I don't wanna waste your time, so I'm gonna make this really quick.

To leave a voice message, wait for the tag.

To page me, press 5.

You can also leave a voice message after you page me.

Or, email me, at 318-367-3135@airtouch.nick

Well now, mate, that wasn't so bad, was it?

n the original talk, this slide is accompanied by a playback of the answering machine recording.

6

Rule-Based Adaptation

Rules for choosing interactors for an interface

If the type of data is *boolean* and the type of form is a *control panel* then use a *check box*

If the type of data is *boolean* and the type of form is a *questionnaire* then use *radio buttons*

(Cf. the decision trees of Eisenstein & Puerta, IUI2000)

When is decision-theoretic adaptation useful?

- There are multiple criterion variables
- There are quantitative tradeoffs
- The (exact) nature of the relationships is an empirical question

Experiment Everyday Example

- Print To								
♦ Printer Command:	ýusr/bin/lpr							
♦ File File Name:	Ĭ	Browse						
Print Range								
♦ All								
	io: j of 3							
🗖 Odd 🔲 Even	🗖 Odd 🔲 Even							
Selecter Thumbhaits								
💠 Selecteri Graphic	💠 Selecteri Graphic							
🔲 Reverse Order 🔲 Annotations								
PostScript Options								
🗖 Fit to Page	♦ Le	💠 Level 1						
🔲 Download Fonts On	ce 🔷 Le	🔷 Level 2 Only						
🗖 Use Printer's Halfto	ne Screen 🛛 💠 Po	💠 PostScript 3 Only						
🗖 Download Fareast F	onts							
ОК		Cancel						

Possible output of spoken help system:

Choose "PostScript Level 2 only"

Set "Fit to Page" to "off".

Set "Print to File" to "on".

Set "Use Printer Halftone Screens" to "on".

Set "Download Asian Fonts" to "off".

Stepwise vs. Bundled Instructions

Stepwise:

S: Set X to 3 U: ... OK S: Set M to 1 U: ... OK S: Set V to 4 U: ... Done

Bundled:

 \mathcal{S} : Set X to 3, set M to 1, set V to 4 \mathcal{U} : Done

Variables in Experiment

Independent variables:

Number of Steps

Presentation

- 2, 3 or 4 steps
- Mode
 - Stepwise vs. bundled

Distraction?

 No secondary task vs. "monitor the flashing lights"

Dependent variables (selection):

Execution Time

 Total time to execute an instruction sequence (including "OK"s, etc.)

Error

 All instructed buttons pressed (and no others)?

The Decision Mechanism Learned Bayesian Network ⁽¹⁾

Bayesian network learned on the basis of the experimental data, showing a prediction for a specific combination of values of the independent variables

In the original talk, demonstrations of the example network and influence diagram are given instead of this and the following three slides. The tool depicted is Netica, which is available from http://www.norsys.com.

14

The same network as in the previous slide, showing a prediction made under uncertainty about the independent variable "Distraction?"

The same network as in the previous two slides, showing the interpretation of an observation of \mathcal{U} 's performance

An influence diagram defined as an extension to the BN of the previous slides

Properties of the Learned Decision Mechanism₈

Learned Bayes net

- Embodies experimental results
- Also allows probabilistic prediction and interpretation

Influence diagram

- Generates a decision for each situation
- Computes general policies

Summary of Internal Policy Table

Steps	Distraction = "No"	Distraction = "Yes"
Four	Stepwise iff w > 9	Stepwise iff w > 3
Three	Stepwise iff w > 21	Stepwise iff w > 6
Two	Always bundled	Stepwise iff w > 9

Fallbacks ¹⁹ Fallback 1: Modify the Model by Hand ⁽¹⁾

Motivation

• Real application situation is different from data-collection situation

Procedure

• Replace learned relationships by theoretically based formulas

Prospects

- New aspects may be highly speculative
- + Decision-theoretic tools permit sensitivity analyses

Fallback 2: Collect Real Usage Data

Motivation

• Experiment is not feasible or could not be realistic

Procedure

• Learn influence diagrams while system is in real use

Prospects

- Massively missing data may make useful learning impossible

Fallback 3: Do Analysis Without Data

22

Motivation

- [Same problems as above]
- Unwillingness to deal with decision-theoretic tools

Procedure

- 1. Draw influence diagrams on paper
- 2. Graph hypotheses about causal relationships
- 3. What's the reasoning behind adaptation?

Prospects

- + You can check the assumptions on which your adaptation policy is based
- + You may decide to change or reject the policy

Check boxes or radio buttons for Boolean data?

Content

[Empirical results and theoretical analysis concerning ways of presenting instructions]

Methodology

- Rule-based adaptation is often too simple
 ⇒ Consider decision-theoretic adaptation
- An optimal adaptation mechanism can in principle be learned fully automatically from empirical data And it has useful additional functions
- Theory-based tweaking is often necessary
 It can be more or less reliable
 Decision-theoretic tools can help explore possible strategies
- 4. Even purely conceptual decision-theoretic analysis can be useful