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Abstract

We extend the differential approach to inference in Bayesiatworks (BNs)
(Darwiche, 2000) to handle specific problems that arise éndbntext of dynamic
Bayesian networks (DBNs). We first summarize Darwiche’'sraggh for BNs,
which involves the representation of a BN in terms of a maliate polynomial.
We then show how procedures for the computation of corredipgnpolynomials
for DBNs can be derived. These procedures permit not onlyaoteoll-up of old
time slices but also a constant-space evaluation of DBNs.riéthod is applicable
to both forward and backward propagation, and it does natymgose that each time
slice of the DBN has the same structure. It is compatible afthroximative methods
for roll-up and evaluation of DBNs. Finally, we discuss hat ways of improving
efficiency, referring as an example to a mobile system in wiie computation is
distributed over a normal workstation and a resource-tichinobile device.

1 Introduction

Dynamic Bayesian networks (DBNs) are an extension of Bayesétworks (BNs). With
a DBN, it is possible to model dynamic processes: Each tireeDBN receives new
evidence, a new time slice is added to the existing DBN. Ebwh slice must satisfy
the Markov assumption: The future is conditionally indegemt of the past, given the
current state. In principle, DBNs can be evaluated with #maesinference procedures
as normal BNs; but their dynamic nature places heavy demand®mputation time
and memory. Therefore, it is necessary to apply roll-up @doces that cut off old time



slices without eliminating their influence on the newer tigtiees. For this condition

to be fulfilled, a probability table representing thelief statehas to be maintained: a
probability distribution over the state of the system at\egitime. This belief state
includes at least all of the nodes that are parents of nod#winext time slice. The
representation of this belief state as a probability tabiges complexity problems: This
table cannot in general be given a factorized representatithout loss of information

(see, e.g., Boyen & Koller, 1998). Roll-up procedures magxect (see, e.g., Kjeerulff,
1995) or approximative (see, e.g., Boyen & Koller, 1999).

With his differential approach to inference in Bayesianwaeks, Darwiche (1999,
2000, 2003) presents an algorithm that compiles a BN intoléivatiate polynomial that
can be processed efficiently: After the polynomial and itdipkderivatives have been
computed, a large class of probabilistic computationsh g classical inference and
sensitivity analysis, can be computed in constant time.

In this paper, we extend the differential approach so that®Ban be handled rel-
atively efficiently, like (static) BNs. In particular, one® approximate factorization of
the belief state has been computed, the effects of this ajppation on the values of
particular nodes can be analyzed with the differential aapi.

In Section 2, we summarize the approach of Darwiche (2000Bf¢s, looking at
the canonical and factorial representation of multivariablynomials that represent a
BN. We will indicate which queries to the BN can be answereth\le polynomial.
In Section 3 we will show how the approach can be extended thl€)Bleveloping a
procedure within the differential approach that makes #gitdle to perform roll-ups and
inference in DBNs with constant space requirements. Ini@edt, we briefly introduce
the system RADY, in which our procedures for solving DBNs are being applldsing
this system as an example, we discuss further ways of impgoefficiency, which are
also applicable in other domains.

2 Polynomial Representation of Bayesian Networks

A BN N can be represented graphically as a directed acyclic gsgghRigure 1). The
nodes of the graph represent the variabl&s, ..., X,,. The edges joining the nodes
represent the dependencies among them. For eachXigdieere is a conditional proba-
bility table (CPT)0 x, pa(x,)) that quantifies these dependencies. (The parent nodes of
X, are denoted bya(X;).) A number of different procedures exist for evaluating BNs
(see, e.g., Pearl, 1988; Jensen, 2001).

2.1 Canonical Representation of the Polynomial

Any BN that contains only discrete variables can be reptteseby a polynomial. In
Figure 1, for example, let us look first only at the binary r@deand B and their asso-
ciated CPT9)4) andé g 4). The two possible values of are denoted by; andas,
while those ofB are denoted by, andb,. Suppose, for example, that we have evidence
e = a; and that we are interested x(e). By multiplying the two CPTs, we obtain

1In this paper, we use the termedeandvariableinterchangeably.



Figure 1: Example of a Bayesian network with four binary rd@®r(A, B,C, D) =
Pr(A) « Pr(B | A) «Pr(C | B) *xPr(D | B).)

an overall probability tablé 4, ) that represents the joint probability distribution of the
nodesA andB:
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Now we need only to add up the table entries (probabilitiea) are consistent with
a1, and we obtain the desired result:

Pr(e) = 9,119171‘,11 4+ 9a19b2‘a1.

For each variable in the BN, it is possible that evidence hentobtained. Such
evidence can be represented byesidence vectohx, for the node in question. The
vector contains a 1 for the state which is realized and a 0 dch ether state of the
variable. (When no evidence concerning a given variableadable, each element of
the evidence vectoris 1.)

We can use the evidence vectors to parameterize the pritpéddille, so that it takes
into account the available evidence, as follows:

9a1€b1‘a1)\a1)\b1 €a2«9b1‘a2)\a2)\b1
‘9a19b2\a1)‘a1>‘b2 eaz‘gbg\%)\%)‘b

0(a,B)AaAB = 0(a)Aa O(p1a)AB =

By adding up all of the table entries, we obtain a multivariadlynomial:

F(Aa, AB, 04, 0(B|A)) = 0a, 0,0, Nay Aoy + 0ay 00, 10y Aay Aby +
9a19b2|a1 >‘a1 )‘bz + eazebz\w)‘az )‘bz :

Now we can determine through the evidence vectors whicle tatries are to be added
up. The),, that are consistent with the evideneare set to 1, while the othex,, are
set to 0. In our example, therefore,, = 0 andX,, = Ay, = Ap, = 1.

With this polynomial, for example, we can compute the belfef particular nodes
in the network, and we can perform various sensitivity asedy Much more detail can
be found in the articles by Darwiche.

In general, the multivariate polynomial is computed asoiei: First we multiply all
of the CPTs of the nodes of the BN and their evidence vectgsto obtain a tablél
that contains the probabilities of the individual hypoike®mbinations, that is:

T =1, 0(x;|pa(xi)Ax; -



Adding up all of the table entries if’, we obtain the multivariate polynomial in
canonical form (see also Darwiche, 2000).

F(Ax;,0(x: pa(x:))) = Ex Iy O(x; pa(x,)Ax, -

The size of a multivariate polynomial in canonical form isvays exponential in the
number of its variables. A way of avoiding the resulting cdempiy is offered by the
factored representation of the polynomial, which is diseddn the following subsection.

2.2 Factored Representation of the Polynomial

In finding a factorization of the multivariate polynomialewvant to take into account the
structure of the Bayesian network; that is, we want to expha factored representation
of the joint probability distribution in order to reduce tbemplexity of the multivariate
polynomial. We will not simply compute the product of all ¢fet CPTs with their ev-
idence vectors. Instead, we will first find an ordering of tloeles according to which
the CPTs and their corresponding evidence vecigrsare to be multiplied. Early in
this process, we will marginalize as many nodes as possililefdhis product, so as to
obtain the multivariate polynomial in factored instead afianical form.

As an illustration, let us take once again the example of tterA and B. Suppose
that the order of processing of the nodes is “FiBstthen A”. This order is also called
theelimination orderr = (B, A). If we marginalize the nodes out as soon as possible,
we obtain:

F(Aa, 2B, 04y, 0(Bla)) = FiB,ay(Aa, AB,0(a), 0(B|a)) =
Ya0ayAa (BB 051a)AB) = oy Aay (Ob, 10, Aby + Obyja; Aboo)+
9a2>\a2 (9b1\a2>‘b1 + sz\az)‘bz) :
When we compare the polynomial in factored form with the polwial in canonical
form, we notice that there are some multiplications in tretdeed form that do not need

to be computed. In connection with the notation of the elation order, it should be
noted that the following holds:

(p,ay O (x|pa(x)Ax = 0(a)Aa O(B1a)AB
and
X(B,a) Oa)Aa 0(5la)A =
EayX(p) O0(a)Aa OB ayAs =
YA 0ara (X8 0(1ayAB)-

We will use the following abbreviated notation for the muatiiate polynomial in
factored form:

felim({XeN})(AX’ e(X‘Pa(X))) =

Zelim({XG.’\f}) Helim({XGN}) (0(X|pa(X)))‘X) -
S X1 Xo) Wiy ,x,) (O(xpa(x)Ax) -
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Figure 2: An arithmetic circuit which computes the polynami
Ya,B 0ara Opjarp (B¢ OcipAc) (¥p OpAp). It has been evaluated (up-
ward pass) and differentiated (downward pass) under ep@en Registersvr are
shown on the left, and registeds are shown on the right.

Hereelim({X € A})is a function that computes the elimination order of thealalgs?

In Figure 2 an arithmetic circuitis shown that computes tigmomialX 4, g sl 4 O aAp
(Xc 0¢1sAc) (Ep 0ppAp) that represents the Bayesian network in Figure 1. In (Dar-
wiche, 2003) it is shown how we obtain such an arithmeticuiirgiven a Bayesian
network. This particular representation of the networkypomial facilitates its evalua-
tion and differentation. Once the arithmetic circuit is lexzed and differentiated, a large
number of probabilistic queries can be retrieved immedigs=e Darwiche, 2003).

We will present here only a simple algorithm for evaluatiowd aifferentiation of
an arithmetic circuit. The technical background and mucheniaformation about al-
gorithms for evaluation and differentiation can be foundrarwiche, 2003; Park &
Darwiche, 2002). To every circuit node two registersr(v) anddr(v) are assigned. In
the upward pass, the values of ¥r€v) registers are computed and the circuit is evalu-
ated. In the downward pass, the values ofdh@) registers are computed and the circuit
is differentiated.

e Initialization: Setdr(v) to 1 for rootw; for all otherv setdr(v) to 0.

e Upward pass:

2The question of which such function is to be used does notazangs here; cf. Kjeerulff (1995).
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Figure 3: Example dynamic Bayesian network discussed itetkte Pr(A;, By,...) =
PI‘(Al) * Pr(31 | Al) X ... )

— If nodep is labeled with an addition sign:
Set thevr register of node to 3, vr(v), wherev are the children op.

— If nodep is labeled with a multiplication sign:
Set thevr register of node to IT,vr(v), wherev are the children of.

e Downward pass:

— If nodep is labeled with an addition sign:
For all childrenv of p: Incremendr(v) by dr(p).

— If nodep is labeled with a multiplication sign:
For all childrenw of p: Incrementr(v) by dr(p)II,/vr(v') , wherev' are the
other children of.

In Figure 2 the values of the registers anddr are shown after the upward and
downward pass under evidenge With these values we can compute the belief value of
anode. For example, for nodewe get( %24, %135) = (0.6,0.4).

3 Computation of the Polynomial in DBNs

Now we will see how these ideas of Darwiche (2000) can be eegmnd applied to
DBNs. Let us look at the DBN in Figure 3, which at this point qmises three time
slices. This DBN includes two building blocks (so-callémhe slice schemasshown
in Figure 4. The first schema, used for the first time slicejngpl/ a BN. The second
schema, which is used for each of the remaining time slises BN plus a specification
of the parent variables that are taken from the precedingsiilne. Suppose that we have
evidences = ey, . .., e3 for Time Slices 1 through 3 and that we want to knowlbleéief
vectorfor a node in Time Slice 2—i.e., the vector that expresseslikaly each possible
value of the variable is, given the currently available evice.

We now have to distinguish between (a) forward propagatidmich brings forward
the impact of the evidence from Time Slice 1 to Time Slice 2] &) backward propa-
gation, which brings the impact of evidence from Time Slidee8k to Time Slice 2.

In the following we will define procedures that will allow us determine the beliefs
for nodes in an arbitrary time sligg(with 1 < ¢ < L); to cut off old time slices; and to



Figure 4: Time Slice Schemas 1 and 2 for the dynamic Bayestwank shown in
Figure 3.

add new time slices. These computations can be performexhstant space (depending
on the structure of the time slice schemas). We perform auplby assigning values
to the variables of the polynomial and then simplifying ttedypomial by evaluating it.
We add new time slices efficiently by recycling polynomiaisiaomputations from the
preceding time slices.

Typically, we will not use a single arbitrary eliminationdar for the whole DBN;
instead we will use an elimination order that is restriciedne time slice. In this way,
we will obtain for each time slice schema a general procefturhe partial polynomial
that corresponds to this time slice schema.

3.1 Forward Propagation

First, we will look at the case of forward propagation. To glify exposition, we assume
that we have only one time slice schema available for thaimisttion of the initial time
slice and also only one time slice schema for the instaaotiatif the following time
slices, as in our example DBN. Later, we will sketch how itdsgible to generalize the
procedure to deal with an arbitrary number of time slice stdfor the instantiation of
the initial and the succeeding time slices.

For the first time slice, we determine a procedure that psrangimple and efficient
extension of the old polynomial when a new time slice is addetie DBN. Let us look
at Time Slices 1 and 2 in Figure 3. We can see that in Time Slite parent nodes of
the nodes in Time Slice 2 cannot be marginalized out untileT8tice 2 has been added.
The result of the procedure for the first time slice is a tabkerthe nodes of the current
time slice that could not be marginalized out. Because ong/tone slice schema can be
instantiated for the following time slices, we know whichdes in the current time slice
will become parent nodes of nodes in the following time sjcnd we can determine
the nodes that belong to the belief state. (The set of thedesrie denoted bls(.).) In
our example, these are the nodésandB;, sobs(1) = {41, B1}. The indices in the
nodes denote the time slice to which they belong.

In our example DBN, we obtain as a procedure for forward pgagian for the first
time slice:

fwdinit = 0(a,) 4, (8,14 B, (Bc, Oy ByAey) (Ep, (D, B,)AD,) -

As was already mentioned, the result is a table over the Sant@roduct of the hypothe-
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Figure 5: An arithmetic circuit that represents the procedor forward propagation
(solid lines) and the polynomial (dashed and solid lines)Tione Slice Schema 1 in
Figure 4. (The tabl&' (4 g is highlighted with a gray background.)

ses of the noded; and By, that isfwdint = T(4,,). The table entries oT'(4, g,
itself are polynomials. We obtain the polynomial for thetfitisne slice by summing
over all of these table entries—that is, over all of the naties have been left out so
far. With this polynomial, it is possible, for example, tonapute the belief value of a
node. In Figure 5, an arithmetic circuit is shown that repnés the procedure for for-
ward propagation (solid lines) and the polynomial (dashadl solid lines) for the first
time slice. The table entries af 4, ,) are shown in Figure 5 asJ;5,), - - -, T(azp,) at
the top. A label (e.g.¢1b;1) is associated with each node in the arithmetic circuit. -Con

sistent labels in each level span a table. For exampl@nda, span the table{ Z; }

biai1 bias
boai  boas |7

InT (4, B,), on the other hand, all of the information is contained thastie passed
to a later time slice so as to permit exact inference. So faeuwidence has been taken
into account through instantiation in the polynomial orify, z,). To simplify the
polynomial orT 4, 5,), all of the A, of the noninteresting nodes can be set to the given
evidence or to 1 if no evidence is given.

Now let us look at Time Slice 2 with its predecessor Time Slicand its successor
Time Slice 3 in Figure 3. We want to determine a procedure vtgékes into account the
effects of the earlier time slice on the following time sicand which allows a simple
and efficient extension of the old polynomial when a new titieeds added.

As was the case with the procedure for the first time slice nibaes of the belief
state cannot be marginalized out until the following timieeshas been added. In our

andbiay, ..., bsas Span the tabl



example, the nodes in question atg¢ and Bs.
We obtain the following as a procedure for forward propagain the second time
slice in our example in Figure 3:

deQ (T(A1B1)) =
(X, O(caiB)Ace) (XD, O(Dy(By)AD,)
(EAl 0(A2\A1))‘A2 (231 0(B2|A27A17B1))\BZT(A1B1))) = T(A232) .

An arithmetic circuit that represents this procedure isnshin Figure 6. In this
figure, hypotheses and nodes from the preceding time sle@raterlined and indices
indicating the time slice number are omitted. To save memiooyh arithmetic cir-
cuits shown in Figure 5 and 6 can be merged to share commartwsies, for example
(Xc 0c1pyAc)-

It is easy to see that the procedures for the following tireeslare all identical and
that the procedures for the time slicegvith ; > 1) can be generalized to:

dei(T(Ai—lBi—l)) =
(¢, OBy c:) (Ep, O(p,1B)AD:)
(Ba; 1 Oasja,_ A, (X 0Bijasa,_1 B, ) B T4, 1B,_1)) = T(a,B,) -

In the case wheré= 1, the variables with the index 0 disappear, and we have:
del (T(AOBO)) = de1 (1)
The polynomial for Time Slices 1 throughis as follows:

Fetim({xen)(Axi, O(x;|pa(x,))) = Setim({a,,B,}) (fwdr (. fwda(fwdi (1)) .. .))
Zelim({AL,BL}) (deL o...ofwdyo del(l)) .

Before we show how the polynomial can be evaluated with @mstpace requirements,
we want to capture the results obtained so far in a generationt As a general proce-
dure for forward propagation from the first time slice, weabbt

fwdinit = Telim({x|XeTS(1)\bs(1)})
Hxers1) O(x|pa(x)Ax =
Yelim({X|X€TS(1)\bs(1)})
HXETS(I) 0(X|pa(X))/\X 1 = del(l) .
TS(1) denotes the nodes of the first time slice, 1) denotes the set of nodes that
belong to the belief state of the first time slice. To simpéfposition (especially for the

algorithm in the next column) we have introduced here thatmarfwd; (1) for fwdini.
The polynomial for the first time slice is therefore as folkow

Fetim({xeny) (Axis O(xi|pa(xi))) =
Eelim(bs(1)) (fWdinit) = Zetim(bs(1)) (fwdi (1)) =
Vetim(bs(1)) (Selim({ x| xeTs(1)\bs(1)}) HxeTts1) O(x|pax)nAx 1) -
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Figure 6: An arithmetic circuit that represents the procedar forward propagation for
Time Slice Schema 2 in Figure 4. (Hypotheses and nodes frerprétceding time slice
are underlined. The tabl&s 4 ) andT 4y are highlighted with a gray background.)

Now let us look at the case in which a time slice is to be add¢ldg@xisting DBN. The
situation is different from the one for the first time sliceheltable over all nodes that
were not marginalized out by the procedure that was jusiegd now passed on to the

10
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Figure 7: Directed graph that determines in which ordergithe slice schemas can be
instantiated.

general procedure for thigh time slice:

fwd;(T) = Zelim({X| X €TS(i)\bs(i)})
Belim({x| X ebs(i-1)}) xets(i) O(x|pax)Ax T .

T is a table over the set of nodéX | X € bs(i — 1)}, which in general was computed
by the procedure of the preceding time slice. The result efftimctionfwd; is a table
over the set of nodegX | X € bs(i)}.

The polynomial for Time Slices 1 througdhis as follows:

Felim({xen) (Ax:, 0(x,pacx,))) = Zelimbs(z)) (fWdr (. .. fwda(fwdi(1))...)) =
Zelim(bs(L))(deL 0...0 fwdg o fwdl(l)) .

The evaluation of the polynomial with constant space regménts for the time slicé
is obtained as follows:

1. T=1,
2. Fori=1t0L: Thew=fwd;(T); T = Thew

3. F(e1,---,er) = Velim(bs(z))(T);

In Step 1, for the initial time slice, the value 1 is passedmthe tableT. In Step 2,
a loop is traversed with the index running from 17ioIn the first iteration, a new table
Thew IS computed by the initial time slice, that Bnew = fwd;(1). In theith iteration,
Thew = fwd;(T) is computed, which takes into account the effects of thaezarine
slice. In the computation within the loop, already existiagiables are reused efficiently.
In particular, for the determination dfvd;(T), the corresponding general procedures
are applied. Consequently, in a subsequent pass throudbdpeno further memory
allocation is performed if all evidence vectors of the cotrégme slice have been given
numerical values. Finally, in Step 3 the polynomial is coteglu

The polynomialF (e, ...,er) can be used for the computation of the belief values
of the nodes in time slicg as well as for other computations, such as sensitivityyasesl
as was mentioned briefly in Section 2.1 and as is discusseaia detail by Darwiche
(2000).

The procedure can also be generalized to DBNs in which maune dme time slice
schema is available for the instantiation of each time sliéedirected graph can be
used to model the dependencies among the time slice schbatatetermine the orders

11



that they can be instantiated in, so that the number of prgesdtan be minimized. In
Figure 7 the solid lines indicate the directed graph thatetothe dependencies among
the time slice schemas (see Figure 4) for the example DBNKggpee 3). The whole
directed graph (with dashed and solid lines) in Figure 7 atigep two time slice schemas
(1 and 3) that can be instantiated as the initial time slickhefDBN and two other time
slice schemas (2 and 4) that can be instantiated as follotiimg slices of the DBN.
After Time Slice Schema 1, either Time Slice Schema 2 or Titiee Schema 4 can
be instantiated as the following time slice. After Time 8l8chema 3, only Time Slice
Schema 4 can be instantiated as the following time slice.

The number of general procedures for a time slice schemaxdsms the number of
possible preceding and succeeding time slice schemas.

In the following, strcti) denotes the nodes of time slice schenaad ts$t) denotes
those of the time slice schema that was instantiated atttirreour example DBN (see
Figure 4), we have t$$) = strct{1) and tsé§t) = strct{2) vt > 2. The belief state
depends not only on the current time slice but also on theemdtiog time slice. So
bs(tsg(i),tsqi + 1)) denotes the set of nodes that belong to the belief state efdiive
i when the succeeding time slicetis- 1, while bs(strct(z), strct(j)) denotes the set of
nodes that belong to the belief state of time slice schiawteen the succeeding time slice
schemaig.

The general procedure for forward propagation for a timeesdchema that instanti-
ates the first time slice is therefore as follows:

fwdisg1),ts2) = Lelim({X| X etsq1)\bs(tsg1),ts52))}) U xetsg1)0(x|pa(x)) * Ax -

The general procedures for Time Slice Schema 1 in Figure Tvaig (1) strcr2) and
fwdsgey1),ster4)- The procedure for Time Slice Schema Jvislsycqs) strera) -

Now let us look at the case in which a time slice is to be addeldaexisting DBN.
The table over all nodes that were not marginalized out byptiseedure that was just
applied is now passed on to the general procedure foittht@me slice:

detss(ifl)Htss(i),tss(iJrl) (T) =
Yelim({X| X ctss(i)\ bs(ts) tsi+1)) })
Yelim({X| X ebs(tsgi—1),ts))}) LLxetsgi) 0 x|pa(x)) * Ax * T .

T is atable over the set of nodéX | X € bs(tsqi — 1),tsq¢))}, which in general was
computed by the procedure of the preceding time slice. Thdtref the functiorfwd is a
table over the set of nodds( | X € bs(tsqi),tsqi + 1))}. The general procedures for
Time Slice Schema 2 in Figure 7 af@dstrc(l)astrct@),strci(Q)y deS[rCT(l)HSUCY(Q),S[FCI(ZL)1
fwdsey2)—stre2) streq2) s - - - » Wdsyrea)—stret2) strea), @nd the general procedures for
Time Slice Schema 4 in Figure 7 af@dstrct(l)astrct(zl),strct(2)y destrct(Q)Hstrct(zl),strct(Q)
andedstrct(3) —sstret(4),stre(2) -

Again, to simplify exposition (especially for the followgralgorithm in 3.3) we in-
troduce here the notatidvdsgcyo)—strer1),strer2) (1) for fwdisg1) ts¢2) -
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The polynomial for Time Slices throughL (with tsg0) = () is therefore as follows:

Fetim({xen}) Azi» Oz, paz:))) = Delim(bs(tsg L) tsg L+1))) (
fwdiss 1 —1)—tsq L) tsL+1) (- - -
detss{l)—>tss(2),tss(3) (
fwdisg0)—tsq1),ts52) (1)) - - +)) -

3.2 Backward Propagation

With the procedures for forward propagation, the impactvwidence in new time slices
can be transported to older time slices. First, an upward pas to be performed from
the older time slice to the new one whose evidence is to bentmite account; then, a
downward pass from the newer time slice to the older one igired. Time slices can
be rolled up only after the downward pass. Hence, a consfzatte evaluation with only
the general procedures for forward propagation is not ptessi

Let us look at Time Slices 2 and 3 in Figure 3. We obtain as aqutoe for backward
propagation for the last time slice:

bwdisy3)—tsg2) = X A5,850(45]42) A5 (B3| 45,4,5,B,)ABs
(ECS 0(C3|Bs))‘cs) (EDS 0(D3|Bs))‘D3) .

In contrast to the general procedures for forward propagti®@ marginalize out all of
the nodes that belong to the time slice in focus. The resaltableT over the Cartesian
product of the hypotheses of the parent nodes that belomg toreceding time slice—in
our example, the node$, andBs.

Now we want to specify a procedure which takes into accoumtetffiects of the
following time slice on the preceding time slice. As was thsecwith the procedure for
the last time slice, we can marginalize out all of the nodastielong to the time slice in
focus, but to keep demands on computation time and memooywead possible, we first
marginalize out the nodes that do not belong to the beli¢é¢ sththis time slice, that is
bs(tsg2),tsg3)), then we multiply the tabl& with the nodes of the belief state of this
time slice and then we marginalize out the nodes of the beti#é of this time slice.

We obtain the following as a procedure for backward progagdbr the second time
slice in our example in Figure 3:

bwdisg3) ts¢2)—tss(1) (T4 B,)) =
(X4, 0450424, (BB, O(By)as,4,,B0)2B, T(a,B,)
(Ecs 0(CaiBayAcs) (EDs O(Dy1B2)AD:))) = TayBy) -

Now we want to capture the results obtained so far in a gemetation. We omit
the general procedure for backward propagation from thditag slice, which is only
a special case of the general procedure for backward prpadeom theith time slice
(1<i< L)

bwdisg(i+1),ts5i)—tsgi—1) (T) =
Yelim({X| X ebs(tsgi),tsg(i+1))}) LLxebs(tsgi) tssi+1)) O(x|pa(x)Ax T
(Belim({X | X etss(i)\bs(tsg(i) ts(i+1))}) LLx ctsg(i)\bs(tsg) tsg(i+1)) @ (X |pa(x)AX) -
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The following hold:
e inthecase = L:ts{L +1) =P andT = 1;
e in the case = 1: tsg0) = 0.

In the next subsection we will show how forward and backwaoghpgation can be com-
bined.

3.3 Combined Forward and Backward Propagation

If we are interested in the belief values of nodes in timeegliof a DBN from the Time
Slices 1 throughl, (with 1 < ¢ < L), we can combine the procedures for forward
and backward propagation: We multiply the procedures femblynomial for forward
propagation from Time Slice 1 throughwith the procedures for the polynomial for
backward propagation from Time Slicésthrought + 1. Then we marginalize out the
nodesbs(tsqt), tsqt + 1)).

The polynomial to be evaluated at timavith evidencee, ..., e, ..., e is as fol-
lows:

Fi(er,. .. €. .. er) = Velim(bs(tsgt) tst+1))) (
detss(t— 1) —tsq(t),tsgt+1) (
detss(t—Q)—»tss(t—l),tss(t) ( 3
detss(O)Htss(l),tss(Q)(l) e ))
bwdisg(t42) ts(t+1)—tsg(t) (
detss(t+3),tss(t+2)—>tss(t+1) (...
bwdisg £41),tsg2)—tsgL—1)(1) - -+ ))) -

The evaluation of the polynomial with constant space renunents for the time slice
t is obtained as follows:

1. F=1;

2. Fori =1tot:  Freu= fwdisgi—1)—tsgi),tssti+1) (F); F = Freu

3. B=1;

4. Fori = L downtot + 1. Bpey = bwdisgi+1),1sqi)—tsi—1)(B); B = Bheu
5. Fi(e1,..., e ... L) = Velim(bs(tsgt) tsqt+1))) (F * B);

Here the same remarks hold as for the preceding algorithrmadtecall the tabld®
in the case of forward propagation aBdn the case of backward propagation.
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Figure 8: Two arithmetic circuits that represent the pracedor forward propagation
(solid and dotted lines) and the polynomial (dotted, dasirati solid lines)—with and
without approximation, respectively. For the sake of ¢jaim the figure, the notation
bs(tsgi — 1),tsq)) has been replaced withs (i — 1, 7).

3.4 Approximation

The procedures can be adapted so that we do not have to cothputbleT, which
passes on all information without approximation. Instesadieral smaller tables can be
computed which are much less complex than the overall tdbknd whose product
approximates the overall table. Boyen and Koller (1999¢dbke how the overall table
can be split up into smaller tables with minimal loss of imfiation. They specify several
criteria wveak interactionconditional weak interactiomnd sparse interactiopon the
basis of which it is possible to partition the set of nodes Beveral smaller sets, so as to
minimize the resulting information loss.

They “...show that the error in a belief state contracts exntially as the process
evolves. Thus, even with multiple approximations, the emoour process remains
bounded indefinitely” (Boyen & Koller, 1998).

We will now show how this approximation can be incorporatett ithe proposed
algorithm. Figure 8(i) shows schematically the generatpdure for forward propaga-
tion in theith time slice fwdisyi—1)—tsqi).ts¢i+1)) Without approximation. For the sake
of greater clarity in the figure, the notatidss(tsqi — 1),ts)) is replaced with the
shorter notatiorbs(i — 1, ), which we will continue to use in the following. The table
T (bs(i — 1,4)) Was computed via the general procedure for forward propagétr the
previous time slice. This table now serves as input to thegemprocedure for forward
propagation in théth time slice, which yields the tablB s;, ; + 1)) as a result.

Figure 8(ii) shows the general procedure for forward pregiag with approxima-
tion in theith time slice. The tablél' s —1,;)) has been split up into the tables
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Would you like to do
anything on the way?

Where's
Gate C387?!

[ cet something to eat
[ Get something to read
[J Look for a present

Well, uh, I guess it’s
about time for me to
head on off to ...

Gate C38 ...

Figure 9: Example of how the systeneERDY adapts its behavior to the user’s perceived
resource limitations.

T (bsy (i —1,i))> - - » L(bsm (i — 1,4))» Which serve as input to the general procedure with
approximation. This procedure yields as aresultthe tBlg, (; i + 1)), - -» T(bs,. (i, + 1))

The approximation method illustrated here for forward @ggtion can be applied
analogously for backward propagation. The approximatequores require less mem-
ory and less computation; both of these advantages spedtewgyvérall inference pro-
cess.

4 lllustration of Practical Applicability

4.1 Example Application Domain

One promising aspect of the method presented above is trstbpitg of optimizing
DBNs for resource-limited devices. In this section, we whlbw how this process can
work in practice. We first briefly introduce the prototype rieldlialog system RADY,
whose requirements originally inspired the developmerdwfmethod. We will then
discuss how the properties of our method for handling DBNs lva exploited in the
context of a system like RaDY.

Our overall goal is to have a mobile assistance system priedermation to a user in
a way that is adapted to his or her current time pressure agmitoe load (cf. Bohnen-
berger, Brandherm, GroBmann-Hutter, Heckmann, & Witti@)2). READY assesses
these resource limitations probabilistically on the basisymptomsén the user’s behav-
ior, as well as on the basis of physiological signals.

The nature of the assistance provided tgaRY can best be explained with a con-
crete example. Figure 9 shows two travelers at a large iatemal airport. The first
traveler is experiencing both time pressure and distradierause of the impending de-
parture of his flight. For him, the second presentation shimathe figure is probably
suitable. Since the second traveler seems to have a lot efdimd attention available,
the first presentation may be more suitable. While diredfiigysecond passenger to the
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Figure 10: Overview of a dynamic Bayesian network for theoggttion of a user’s
resource limitations. (Explanation in text.)

gate, the system can lead him past selected shops, so than lyetcsome useful things
done on the way to the gate.

In this example, the differences between the two travelensbe recognized mainly
on the basis of features of their speech such as the lengtie aftterances, the presence
of pauses, and the rate of articulation.

The first person is speaking fast, loud and tersely. Thesmdigators of both time
pressure and cognitive load. In th&RDY project, several BNs have been developed
for the assessment of time pressure and cognitive load.eTBNSs serve as time slices
for the DBN. A BN for the interpretation of speech symptomswearned on the basis
of two experiments (see Muller, GroBmann-Hutter, JamgRommer, & Wittig, 2001;
Kiefer, 2002), while another BN for the interpretation offeres of manual input be-
havior was constructed on the basis of a literature study ($edmark, 2000). The
combination of these two BNs allowseRDY to make inferences on the basis of mul-
timodal imput. Other BNs to handle data from an eye tracker fanm physiological
sensors are currently being developed. Figure 10 showsitmendlices of a DBN that
handles speech and motor symptoms. In the current versitireafystem, a time slice
typically comprises about 40 nodes, each of which has 2, 8 states.

Let us look more closely at the nodes in time sli€et- 1. The node<ognitive Load
andTime Pressure model the resource limitations of the user. These nodesatized
asdynamic nodesbecause they have an impact on the next slice. These ug@rfies
vary over time and cannot be observed directly. They can tim&gd on the basis of
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symptoms in the behavior of the user, such as pauses in spedud use of high force
in tapping on the screen. The nodes that represent symptob&havior areemporary
nodes The static nodeshown in the figure arbase ratef the user—for example,
how often this user typically produced filled pauses (eaigty). These properties do not
change over time, but they are estimated with increasingracg as more information
arrives. They have the same impact on each time slice.

Evidence of the types shown in the figure is acquired eachtfimeiser produces a
spoken utterance or provides manual input. A greater psougshallenge is raised by
data from physiological sensors, which yield signals comiog variables like the user’s
heart beat, skin conductance, and muscle tension.

Data of ths type is typically acquired at a high rate. Instefdoking used directly for
instantiation of variables in the DBN, the signals must fissubjected to preprocessing
that yields somewhat higher-level data. For example, pegssing of the electrocardio-
graphic signal yields a measure of heart rate. But even thigber-level variables can
require a potentially large number of instantiations ofécbeesponding temporary nodes
of the DBN. Therefore, we need a fast inference algorithntersolution of the DBNs.
And if we want to evaluate a DBN fast on a PDA, we have to adapttimputation to
the limitations of the PDA (e.g., with respect to computatiione and memory).

Ramos, Cozman, and lde (2002) present an algorithm for theepsing of static
BNs on a PDA that can deal with dynamically changing limdas in the availability
of the resources time and memory. The approach involvesdimination of various
algorithms that operate on different parts of the netwarla way that depends on the
availability of resources. These algorithms exhibit amgiand anyspace behavior.

By contrast, our procedure does not exhibit anytime or aayspehavior. The DBN
has to be adapted in advance to the resource limitationseoPA, so as to ensure
as far as possible that the inference can be performed wiftkitimits imposed by the
device. In the next subsection, we will show how such adaptatan be achieved with
the methods presented in this paper.

4.2 Exploiting the Extended Approach

Figure 11 gives an overview of the various types of compomathat need to be per-
formed in a system like RaDY. Two types of computation can be distinguished: those
that are performed offline on a PC and those that are perfoomi@te on a PDA used by
the user.

Let us consider first the offline computations. If we have a$éime slice schemas,
the dependencies among them, and the set of possible egidada@uery nodes, we can
compute a set of raw polynomials with the polynomial genenaslgorithm that was
presented above. InERADY, the set of time slice schemas would comprise the Bayesian
networks for the recognition of time pressure and cognitizel on the basis of speech,
manual input behavior, and physiological signals. The ddpacies among the time slice
schemas are represented in a directed graph like the ongumeFr, which determines
the orders in which the time slice schemas can be instadtiate

In the airport scenario introduced above, we are interestdgdin the belief values
of the dynamic nodeSognitive Load andTime Pressure. Therefore, all that is needed is
an upward pass in the corresponding arithmetic circuit Aarccomputation of the table
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schemas
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Figure 11: Online and offline computations for the resouimdted processing of DBNs.

T. From the table entries, the desired belief values can bairat. In this case, the
downward pass can be omitted.

In a second step in the offline computations, the set of rawnmohials can be
adapted to the resource limitations of a PDA through appnaxion. The relevant prop-
erties of the PDA must have been entered manually, for examplthe basis of the
manufacturer’s specifications. We obtain a set of optimga@ginomials and an evalua-
tion algorithm. For the set of optimized polynomials, thetgyn can perform sensitivity
analyse$to compute a priority list of combinations of pieces of evide ordered by their
impact on particular query nodes: We want to avoid the in&tan of combinations of
evidence that will have little or no impact.

The set of optimized polynomials, the priority list, and ga&luation algorithm are
then passed to the PDA. Depending on the current memory arel limitations, the
currently available evidence, and the selected query natesppropriate polynomial is
selected out of the set of optimized polynomials by the sigle@lgorithm.

Suppose that, during the user’s interaction with the PDAsamavidence is received
within a given time interval than the DBN is capable of praieg. In this case, a subset
of pieces of evidence should be used for instantiation sihisset should be the one that is
likely to exert the greatest influence on the query nodeyrdatg to the priority list. If
this situation occurs frequently, the reason may be thapkeification of the computing

3The possibility of performing sensitivity analyses of thit is one of the general strengths of Darwiche’s
differential approach. The discussion of how the sensgjtiahalyses would look in this particular case would
exceed the scope of this paper.
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resources of the PDA was too optimistic; in this case, it mapétter to create a revised
specification of the resource limitations, which will in tulead to a greater degree of
approximation of the polynomials themselves.

During the interaction of the user with the PDA, it may be [ldssfor the system to
recognize typical features of the way in which the currertr uses the device. For ex-
ample, a given user may consistently avoid using speeclynétan, restricting himself
entirely to pen input. The next time the PDA is connected ®RIE, it can transmit its
accumulated knowledge about the user to the PC. The systéne ®C can then update
its list of possible combinations of evidence as well as $seasment of the PDA's re-
source limitations, and it can compute a new approximatfche polynomials as well
as a new priority list of combinations of evidence. When tkerustarts using the PDA
again, the system will have adapted itself better to theiremqents and properties of the
user.

5 Summary

We have shown how Darwiche’s differential approach to theation of Bayesian net-
works can be extended to dynamic Bayesian networks. We Ipaeified the procedures
that can be used to determine the relevant polynomials Bitrarily large DBNs. Com-
putations for partial polynomials can be reused.

Through the use of these formulas, we can perform forwardoaeward propaga-
tion (as well as a combination of the two). We can also roll lgeotime slices and
other superfluous network structures while ensuring consfaace requirements in the
evaluation of the polynomials. The other advantages of tfferdntial approach are
now also available for DBNs, for example, efficient methaatssensitivity analysis (see
Darwiche, 2000, 1999).

We have also described how the method presented can be wsirptithe processing
of DBNSs to the resource limitations of a mobile device.
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