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Abstract

We extend the differential approach to inference in Bayesian networks (BNs)
(Darwiche, 2000) to handle specific problems that arise in the context of dynamic
Bayesian networks (DBNs). We first summarize Darwiche’s approach for BNs,
which involves the representation of a BN in terms of a multivariate polynomial.
We then show how procedures for the computation of corresponding polynomials
for DBNs can be derived. These procedures permit not only an exact roll-up of old
time slices but also a constant-space evaluation of DBNs. The method is applicable
to both forward and backward propagation, and it does not presuppose that each time
slice of the DBN has the same structure. It is compatible withapproximative methods
for roll-up and evaluation of DBNs. Finally, we discuss further ways of improving
efficiency, referring as an example to a mobile system in which the computation is
distributed over a normal workstation and a resource-limited mobile device.

1 Introduction

Dynamic Bayesian networks (DBNs) are an extension of Bayesian networks (BNs). With
a DBN, it is possible to model dynamic processes: Each time the DBN receives new
evidence, a new time slice is added to the existing DBN. Each time slice must satisfy
the Markov assumption: The future is conditionally independent of the past, given the
current state. In principle, DBNs can be evaluated with the same inference procedures
as normal BNs; but their dynamic nature places heavy demandson computation time
and memory. Therefore, it is necessary to apply roll-up procedures that cut off old time
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slices without eliminating their influence on the newer timeslices. For this condition
to be fulfilled, a probability table representing thebelief statehas to be maintained: a
probability distribution over the state of the system at a given time. This belief state
includes at least all of the nodes that are parents of nodes inthe next time slice. The
representation of this belief state as a probability table raises complexity problems: This
table cannot in general be given a factorized representation without loss of information
(see, e.g., Boyen & Koller, 1998). Roll-up procedures may beexact (see, e.g., Kjærulff,
1995) or approximative (see, e.g., Boyen & Koller, 1999).

With his differential approach to inference in Bayesian networks, Darwiche (1999,
2000, 2003) presents an algorithm that compiles a BN into a multivariate polynomial that
can be processed efficiently: After the polynomial and its partial derivatives have been
computed, a large class of probabilistic computations, such as classical inference and
sensitivity analysis, can be computed in constant time.

In this paper, we extend the differential approach so that DBNs can be handled rel-
atively efficiently, like (static) BNs. In particular, oncean approximate factorization of
the belief state has been computed, the effects of this approximation on the values of
particular nodes can be analyzed with the differential approach.

In Section 2, we summarize the approach of Darwiche (2000) for BNs, looking at
the canonical and factorial representation of multivariate polynomials that represent a
BN. We will indicate which queries to the BN can be answered with the polynomial.
In Section 3 we will show how the approach can be extended to DBNs, developing a
procedure within the differential approach that makes it possible to perform roll-ups and
inference in DBNs with constant space requirements. In Section 4, we briefly introduce
the system READY, in which our procedures for solving DBNs are being applied.Using
this system as an example, we discuss further ways of improving efficiency, which are
also applicable in other domains.

2 Polynomial Representation of Bayesian Networks

A BN N can be represented graphically as a directed acyclic graph (see Figure 1). The
nodes of the graph represent the variables1 X1, . . . , Xn. The edges joining the nodes
represent the dependencies among them. For each nodeXi, there is a conditional proba-
bility table (CPT)θ(Xi|pa(Xi)) that quantifies these dependencies. (The parent nodes of
Xi are denoted bypa(Xi).) A number of different procedures exist for evaluating BNs
(see, e.g., Pearl, 1988; Jensen, 2001).

2.1 Canonical Representation of the Polynomial

Any BN that contains only discrete variables can be represented by a polynomial. In
Figure 1, for example, let us look first only at the binary nodesA andB and their asso-
ciated CPTsθ(A) andθ(B|A). The two possible values ofA are denoted bya1 anda2,
while those ofB are denoted byb1 andb2. Suppose, for example, that we have evidence
e = a1 and that we are interested inPr(e). By multiplying the two CPTs, we obtain

1In this paper, we use the termsnodeandvariable interchangeably.
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Figure 1: Example of a Bayesian network with four binary nodes. (Pr(A, B, C, D) =
Pr(A) ∗ Pr(B | A) ∗ Pr(C | B) ∗ Pr(D | B).)

an overall probability tableθ(A,B) that represents the joint probability distribution of the
nodesA andB:

θ(A,B) = θ(A) θ(B|A) =

[

θa1

θa2

][

θb1|a1
θb1|a2

θb2|a1
θb2|a2

]

=

[

θa1
θb1|a1

θa2
θb1|a2

θa1
θb2|a1

θa2
θb2|a2

]

.

Now we need only to add up the table entries (probabilities) that are consistent with
a1, and we obtain the desired result:

Pr(e) = θa1
θb1|a1

+ θa1
θb2|a1

.

For each variable in the BN, it is possible that evidence has been obtained. Such
evidence can be represented by anevidence vectorλXi

for the node in question. The
vector contains a 1 for the state which is realized and a 0 for each other state of the
variable. (When no evidence concerning a given variable is available, each element of
the evidence vector is 1.)

We can use the evidence vectors to parameterize the probability table, so that it takes
into account the available evidence, as follows:

θ(A,B)λAλB = θ(A)λA θ(B|A)λB =

[

θa1
θb1|a1

λa1
λb1

θa2
θb1|a2

λa2
λb1

θa1
θb2|a1

λa1
λb2

θa2
θb2|a2

λa2
λb2

]

.

By adding up all of the table entries, we obtain a multivariate polynomial:

F(λA, λB, θ(A), θ(B|A)) = θa1
θb1|a1

λa1
λb1 + θa2

θb1|a2
λa2

λb1+

θa1
θb2|a1

λa1
λb2 + θa2

θb2|a2
λa2

λb2 .

Now we can determine through the evidence vectors which table entries are to be added
up. Theλxi

that are consistent with the evidencee are set to 1, while the otherλxi
are

set to 0. In our example, therefore,λa2
= 0 andλa1

= λb1 = λb2 = 1.
With this polynomial, for example, we can compute the beliefs for particular nodes

in the network, and we can perform various sensitivity analyses. Much more detail can
be found in the articles by Darwiche.

In general, the multivariate polynomial is computed as follows: First we multiply all
of the CPTs of the nodes of the BN and their evidence vectorsλXi

to obtain a tableT
that contains the probabilities of the individual hypothesis combinations, that is:

T = Πn
i=1 θ(Xi|pa(Xi))λXi

.
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Adding up all of the table entries inT, we obtain the multivariate polynomial in
canonical form (see also Darwiche, 2000).

F(λXi
, θ(Xi|pa(Xi))) = ΣX Πn

i=1 θ(Xi|pa(Xi))λXi
.

The size of a multivariate polynomial in canonical form is always exponential in the
number of its variables. A way of avoiding the resulting complexity is offered by the
factored representation of the polynomial, which is discussed in the following subsection.

2.2 Factored Representation of the Polynomial

In finding a factorization of the multivariate polynomial, we want to take into account the
structure of the Bayesian network; that is, we want to exploit the factored representation
of the joint probability distribution in order to reduce thecomplexity of the multivariate
polynomial. We will not simply compute the product of all of the CPTs with their ev-
idence vectors. Instead, we will first find an ordering of the nodes according to which
the CPTs and their corresponding evidence vectorsλXi

are to be multiplied. Early in
this process, we will marginalize as many nodes as possible out of this product, so as to
obtain the multivariate polynomial in factored instead of canonical form.

As an illustration, let us take once again the example of the nodesA andB. Suppose
that the order of processing of the nodes is “FirstB, thenA”. This order is also called
theelimination orderπ = 〈B, A〉. If we marginalize the nodes out as soon as possible,
we obtain:

F(λA, λB, θ(A), θ(B|A)) = F〈B,A〉(λA, λB, θ(A), θ(B|A)) =

ΣA θ(A)λA (ΣB θ(B|A)λB) = θa1
λa1

(θb1|a1
λb1 + θb2|a1

λb2)+

θa2
λa2

(θb1|a2
λb1 + θb2|a2

λb2) .

When we compare the polynomial in factored form with the polynomial in canonical
form, we notice that there are some multiplications in the factored form that do not need
to be computed. In connection with the notation of the elimination order, it should be
noted that the following holds:

Π〈B,A〉 θ(X|pa(X))λX = θ(A)λA θ(B|A)λB

and

Σ〈B,A〉 θ(A)λA θ(B|A)λB =

Σ〈A〉Σ〈B〉 θ(A)λA θ(B|A)λB =

ΣA θ(A)λA (ΣB θ(B|A)λB).

We will use the following abbreviated notation for the multivariate polynomial in
factored form:

Felim({X∈N})(λX , θ(X|pa(X))) =

Σelim({X∈N}) Πelim({X∈N}) (θ(X|pa(X))λX) =

Σ〈X1,...,Xn〉 Π〈X1,...,Xn〉 (θ(X|pa(X))λX) .
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λa1

1 .06

θa1

.3 .2

λa2

1 .28 .7 .4

θa2+

1 .34 .2 .3

θb1|a1

1 .34

λb1 θb1|a2

.4 .7

+

1 0

+

1 0.8 0

θb2|a1

0 .66

λb2

.6 0

θb2|a2

1 .34

+

.6 .34 .5 01 .204 .4 .34 1 .136 .5 0 .7 .34 .1 01 .238 .3 .34 1 .102 .9 .0

θc1|b1 λc1 θc1|b2 θc2|b1 λc2 θc2|b2 θd1|b1 λd1 θd1|b2 θd2|b1 λd2 θd2|b2

∗ ∗∗ ∗ ∗∗
.9 0.1 0.7 .34.5 0.4 .34.5 0.6 .34 .3 .34

∗
.28 1

∗
0 1

∗
.06 1

∗
0 1

∗ ∗

+

.34 1

Figure 2: An arithmetic circuit which computes the polynomial
ΣA,B θAλA θB|AλB (ΣC θC|BλC) (ΣD θD|BλD). It has been evaluated (up-
ward pass) and differentiated (downward pass) under evidence b1. Registersvr are
shown on the left, and registersdr are shown on the right.

Here,elim({X ∈ N}) is a function that computes the elimination order of the variables.2

In Figure 2 an arithmetic circuit is shown that computes the polynomialΣA,B θAλA θB|AλB

(ΣC θC|BλC) (ΣD θD|BλD) that represents the Bayesian network in Figure 1. In (Dar-
wiche, 2003) it is shown how we obtain such an arithmetic circuit given a Bayesian
network. This particular representation of the network polynomial facilitates its evalua-
tion and differentation. Once the arithmetic circuit is evaluated and differentiated, a large
number of probabilistic queries can be retrieved immediately (see Darwiche, 2003).

We will present here only a simple algorithm for evaluation and differentiation of
an arithmetic circuit. The technical background and much more information about al-
gorithms for evaluation and differentiation can be found in(Darwiche, 2003; Park &
Darwiche, 2002). To every circuit nodev, two registersvr(v) anddr(v) are assigned. In
the upward pass, the values of thevr(v) registers are computed and the circuit is evalu-
ated. In the downward pass, the values of thedr(v) registers are computed and the circuit
is differentiated.

• Initialization: Setdr(v) to 1 for rootv; for all otherv setdr(v) to 0.

• Upward pass:

2The question of which such function is to be used does not concern us here; cf. Kjærulff (1995).
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Time Slice 1 Time Slice 2 Time Slice 3

Figure 3: Example dynamic Bayesian network discussed in thetext. (Pr(A1, B1, . . .) =
Pr(A1) ∗ Pr(B1 | A1) ∗ . . . .)

– If nodep is labeled with an addition sign:
Set thevr register of nodep to Σvvr(v), wherev are the children ofp.

– If nodep is labeled with a multiplication sign:
Set thevr register of nodep to Πvvr(v), wherev are the children ofp.

• Downward pass:

– If nodep is labeled with an addition sign:
For all childrenv of p: Incrementdr(v) by dr(p).

– If nodep is labeled with a multiplication sign:
For all childrenv of p: Incrementdr(v) by dr(p)Πv′vr(v′) , wherev′ are the
other children ofp.

In Figure 2 the values of the registersvr and dr are shown after the upward and
downward pass under evidenceb1. With these values we can compute the belief value of
a node. For example, for nodeC we get

(

0.204
0.34 , 0.136

0.34

)

= (0.6, 0.4).

3 Computation of the Polynomial in DBNs

Now we will see how these ideas of Darwiche (2000) can be extended and applied to
DBNs. Let us look at the DBN in Figure 3, which at this point comprises three time
slices. This DBN includes two building blocks (so-calledtime slice schemas), shown
in Figure 4. The first schema, used for the first time slice, is simply a BN. The second
schema, which is used for each of the remaining time slices, is a BN plus a specification
of the parent variables that are taken from the preceding time slice. Suppose that we have
evidencee = e1, . . . , e3 for Time Slices 1 through 3 and that we want to know thebelief
vectorfor a node in Time Slice 2—i.e., the vector that expresses howlikely each possible
value of the variable is, given the currently available evidence.

We now have to distinguish between (a) forward propagation,which brings forward
the impact of the evidence from Time Slice 1 to Time Slice 2; and (b) backward propa-
gation, which brings the impact of evidence from Time Slice 3back to Time Slice 2.

In the following we will define procedures that will allow us to determine the beliefs
for nodes in an arbitrary time slicet (with 1 ≤ t ≤ L); to cut off old time slices; and to
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Figure 4: Time Slice Schemas 1 and 2 for the dynamic Bayesian network shown in
Figure 3.

add new time slices. These computations can be performed in constant space (depending
on the structure of the time slice schemas). We perform a roll-up by assigning values
to the variables of the polynomial and then simplifying the polynomial by evaluating it.
We add new time slices efficiently by recycling polynomials and computations from the
preceding time slices.

Typically, we will not use a single arbitrary elimination order for the whole DBN;
instead we will use an elimination order that is restricted to one time slice. In this way,
we will obtain for each time slice schema a general procedurefor the partial polynomial
that corresponds to this time slice schema.

3.1 Forward Propagation

First, we will look at the case of forward propagation. To simplify exposition, we assume
that we have only one time slice schema available for the instantiation of the initial time
slice and also only one time slice schema for the instantiation of the following time
slices, as in our example DBN. Later, we will sketch how it is possible to generalize the
procedure to deal with an arbitrary number of time slice schemas for the instantiation of
the initial and the succeeding time slices.

For the first time slice, we determine a procedure that permits a simple and efficient
extension of the old polynomial when a new time slice is addedto the DBN. Let us look
at Time Slices 1 and 2 in Figure 3. We can see that in Time Slice 1the parent nodes of
the nodes in Time Slice 2 cannot be marginalized out until Time Slice 2 has been added.
The result of the procedure for the first time slice is a table over the nodes of the current
time slice that could not be marginalized out. Because only one time slice schema can be
instantiated for the following time slices, we know which nodes in the current time slice
will become parent nodes of nodes in the following time slices, and we can determine
the nodes that belong to the belief state. (The set of these nodes is denoted bybs(.).) In
our example, these are the nodesA1 andB1, sobs(1) = {A1, B1}. The indices in the
nodes denote the time slice to which they belong.

In our example DBN, we obtain as a procedure for forward propagation for the first
time slice:

fwdinit = θ(A1)λA1
θ(B1|A1)λB1

(ΣC1
θ(C1|B1)λC1

) (ΣD1
θ(D1|B1)λD1

) .

As was already mentioned, the result is a table over the Cartesian product of the hypothe-

7



λa1

a1

θa1

a1

λa2

a2 a2

θa2+

b1 b1a1

θb1|a1

b1

λb1 θb1|a2

b1a2

+

b2

+

b2b2a1

θb2|a1

b2

λb2

b2a2

θb2|a2

b1

+

c1b1 c1b2c1 c2b1 c2 c2b2 d1b1 d1b2d1 d2b1 d2 d2b2

θc1|b1 λc1 θc1|b2 θc2|b1 λc2 θc2|b2 θd1|b1 λd1 θd1|b2 θd2|b1 λd2 θd2|b2

∗ ∗∗ ∗ ∗∗
d2b2d1b2d1b1c2b2c2b1c1b2c1b1 d2b1

∗
b1a2

∗
b2a1

∗
b1a1

∗
b2a2

∗ ∗

+

F

T(a1b1) = T(a2b1) = T(a1b2) = T(a2b2) = T(AB)

Figure 5: An arithmetic circuit that represents the procedure for forward propagation
(solid lines) and the polynomial (dashed and solid lines) for Time Slice Schema 1 in
Figure 4. (The tableT(AB) is highlighted with a gray background.)

ses of the nodesA1 andB1, that is fwdinit = T(A1B1). The table entries ofT(A1B1)

itself are polynomials. We obtain the polynomial for the first time slice by summing
over all of these table entries—that is, over all of the nodesthat have been left out so
far. With this polynomial, it is possible, for example, to compute the belief value of a
node. In Figure 5, an arithmetic circuit is shown that represents the procedure for for-
ward propagation (solid lines) and the polynomial (dashed and solid lines) for the first
time slice. The table entries ofT(A1B1) are shown in Figure 5 as T(a1b1), . . . , T(a2b2) at
the top. A label (e.g.,c1b1) is associated with each node in the arithmetic circuit. Con-

sistent labels in each level span a table. For example,a1 anda2 span the table

[

a1

a2

]

,

andb1a1, . . . , b2a2 span the table

[

b1a1 b1a2

b2a1 b2a2

]

.

In T(A1B1), on the other hand, all of the information is contained that must be passed
to a later time slice so as to permit exact inference. So far, no evidence has been taken
into account through instantiation in the polynomial or inT(A1B1). To simplify the
polynomial orT(A1B1), all of theλxi

of the noninteresting nodes can be set to the given
evidence or to 1 if no evidence is given.

Now let us look at Time Slice 2 with its predecessor Time Slice1 and its successor
Time Slice 3 in Figure 3. We want to determine a procedure which takes into account the
effects of the earlier time slice on the following time slices and which allows a simple
and efficient extension of the old polynomial when a new time slice is added.

As was the case with the procedure for the first time slice, thenodes of the belief
state cannot be marginalized out until the following time slice has been added. In our
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example, the nodes in question areA2 andB2.
We obtain the following as a procedure for forward propagation in the second time

slice in our example in Figure 3:

fwd2(T(A1B1)) =

(ΣC2
θ(C2|B2)λC2

) (ΣD2
θ(D2|B2)λD2

)

(ΣA1
θ(A2|A1)λA2

(ΣB1
θ(B2|A2,A1,B1)λB2

T(A1B1))) = T(A2B2) .

An arithmetic circuit that represents this procedure is shown in Figure 6. In this
figure, hypotheses and nodes from the preceding time slice are underlined and indices
indicating the time slice number are omitted. To save memory, both arithmetic cir-
cuits shown in Figure 5 and 6 can be merged to share common structures, for example
(ΣC θ(C|B)λC).

It is easy to see that the procedures for the following time slices are all identical and
that the procedures for the time slicesi (with i ≥ 1) can be generalized to:

fwdi(T(Ai−1Bi−1)) =

(ΣCi
θ(Ci|Bi)λCi

) (ΣDi
θ(Di|Bi)λDi

)

(ΣAi−1
θ(Ai|Ai−1)λAi

(ΣBi−1
θ(Bi|Ai,Ai−1,Bi−1)λBi

T(Ai−1Bi−1))) = T(AiBi) .

In the case wherei = 1, the variables with the index 0 disappear, and we have:

fwd1(T(A0B0)) = fwd1(1).

The polynomial for Time Slices 1 throughL is as follows:

Felim({X∈N})(λXi
, θ(Xi|pa(Xi))) = Σelim({AL,BL})(fwdL(. . . fwd2(fwd1(1)) . . .))

Σelim({AL,BL})(fwdL ◦ . . . ◦ fwd2 ◦ fwd1(1)) .

Before we show how the polynomial can be evaluated with constant space requirements,
we want to capture the results obtained so far in a general notation. As a general proce-
dure for forward propagation from the first time slice, we obtain:

fwdinit = Σelim({X|X∈TS(1)\bs(1)})

ΠX∈TS(1) θ(X|pa(X))λX =

Σelim({X|X∈TS(1)\bs(1)})

ΠX∈TS(1) θ(X|pa(X))λX 1 = fwd1(1) .

TS(1) denotes the nodes of the first time slice, andbs(1) denotes the set of nodes that
belong to the belief state of the first time slice. To simplifyexposition (especially for the
algorithm in the next column) we have introduced here the notationfwd1(1) for fwdinit .

The polynomial for the first time slice is therefore as follows:

Felim({X∈N})(λXi
, θ(Xi|pa(Xi))) =

Σelim(bs(1))(fwdinit) = Σelim(bs(1))(fwd1(1)) =

Σelim(bs(1))(Σelim({X|X∈TS(1)\bs(1)}) ΠX∈TS(1) θ(X|pa(X))λX 1) .
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∗ ∗∗ ∗ ∗∗

c1b1 c1b2c1 c2b1 c2 c2b2 d1b1 d1b2d1 d2b1 d2 d2b2

θc1|b1 λc1 θc1|b2 θc2|b1 λc2 θc2|b2 θd1|b1 λd1 θd1|b2 θd2|b1 λd2 θd2|b2

a1a2

θa1|a2

a1

λa1

a1a1

θa1|a1

a2a1

θa2|a1

a2

λa2

a2a2

θa2|a2

b1a1a1 b1a2a2

· · ·· · ·
b2a1a1 b2a2a2· · · · · ·

∗ ∗ ∗ ∗∗
b1a1a2

+

b1a2

+

b2a1

+

b1a1

+

b2a2

λb1

b1 b1a1a1b1 b1a1a1b2 b1a1a2b1 b1a2a2b2

θb1|a1a1b1
θb1|a1a1b2

θb1|a1a2b1
θb1|a1a2b2

T(a2b2)

a2b2

· · ·T(a1b1)

a1b1

θb1|a2a2b2

b1a2a2b2

· · · θb2|a1a1b1

b2a1a1b1

λb2

b2b2a2a2b2

θb2|a2a2b2
· · ·
· · ·· · · · · ·

∗ ∗
d2b2d1b2d1b1c2b2c2b1c1b2c1b1 d2b1

+

b1

∗ ∗

b2

+

b1

+

b2

+

∗ ∗b2a2

T(a2b2)

b2a1

T(a1b2)

b1a2

T(a2b1)

b1a1

T(a1b1)

∗ ∗ ∗ ∗
b1a1a1b1 b1a1a1b2 b1a1a2b1 b1a1a2b2

∗
b1a2a2b2

· · · ∗
b2a1a1b1 b2a2a2b2

∗· · ·
· · · · · ·

+

b1a1a1

+

b1a2a2

+ +· · ·· · ·
b2a1a1 b2a2a2· · · · · ·

+

b1a1a2

T(AB)

T(AB)

Figure 6: An arithmetic circuit that represents the procedure for forward propagation for
Time Slice Schema 2 in Figure 4. (Hypotheses and nodes from the preceding time slice
are underlined. The tablesT(AB) andT(AB) are highlighted with a gray background.)

Now let us look at the case in which a time slice is to be added tothe existing DBN. The
situation is different from the one for the first time slice: The table over all nodes that
were not marginalized out by the procedure that was just applied is now passed on to the
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Schema 4
Time Slice

Schema 3
Time Slice

Schema 2
Time Slice

Schema 1
Time Slice

Figure 7: Directed graph that determines in which orders thetime slice schemas can be
instantiated.

general procedure for theith time slice:

fwdi(T) = Σelim({X|X∈TS(i)\bs(i)})

Σelim({X|X∈bs(i−1)}) ΠX∈TS(i) θ(X|pa(X))λX T .

T is a table over the set of nodes{X | X ∈ bs(i − 1)}, which in general was computed
by the procedure of the preceding time slice. The result of the functionfwdi is a table
over the set of nodes{X | X ∈ bs(i)}.

The polynomial for Time Slices 1 throughL is as follows:

Felim({X∈N})(λXi
, θ(Xi|pa(Xi))) = Σelim(bs(L))(fwdL(. . . fwd2(fwd1(1)) . . .)) =

Σelim(bs(L))(fwdL ◦ . . . ◦ fwd2 ◦ fwd1(1)) .

The evaluation of the polynomial with constant space requirements for the time sliceL
is obtained as follows:

1. T = 1;

2. Fori = 1 to L: Tnew = fwdi(T); T = Tnew;

3. F(e1, . . . , eL) = Σelim(bs(L))(T);

In Step 1, for the initial time slice, the value 1 is passed on to the tableT. In Step 2,
a loop is traversed with the index running from 1 toL. In the first iteration, a new table
Tnew is computed by the initial time slice, that isTnew = fwd1(1). In theith iteration,
Tnew = fwdi(T) is computed, which takes into account the effects of the earlier time
slice. In the computation within the loop, already existingvariables are reused efficiently.
In particular, for the determination offwdi(T), the corresponding general procedures
are applied. Consequently, in a subsequent pass through theloop, no further memory
allocation is performed if all evidence vectors of the current time slice have been given
numerical values. Finally, in Step 3 the polynomial is computed.

The polynomialF(e1, . . . , eL) can be used for the computation of the belief values
of the nodes in time slicet, as well as for other computations, such as sensitivity analyses,
as was mentioned briefly in Section 2.1 and as is discussed in more detail by Darwiche
(2000).

The procedure can also be generalized to DBNs in which more than one time slice
schema is available for the instantiation of each time slice. A directed graph can be
used to model the dependencies among the time slice schemas that determine the orders
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that they can be instantiated in, so that the number of procedures can be minimized. In
Figure 7 the solid lines indicate the directed graph that models the dependencies among
the time slice schemas (see Figure 4) for the example DBN (seeFigure 3). The whole
directed graph (with dashed and solid lines) in Figure 7 comprises two time slice schemas
(1 and 3) that can be instantiated as the initial time slice ofthe DBN and two other time
slice schemas (2 and 4) that can be instantiated as followingtime slices of the DBN.
After Time Slice Schema 1, either Time Slice Schema 2 or Time Slice Schema 4 can
be instantiated as the following time slice. After Time Slice Schema 3, only Time Slice
Schema 4 can be instantiated as the following time slice.

The number of general procedures for a time slice schema depends on the number of
possible preceding and succeeding time slice schemas.

In the following, strct(i) denotes the nodes of time slice schemai and tss(t) denotes
those of the time slice schema that was instantiated at timet. In our example DBN (see
Figure 4), we have tss(1) = strct(1) and tss(t) = strct(2) ∀t ≥ 2. The belief state
depends not only on the current time slice but also on the succeeding time slice. So
bs(tss(i), tss(i + 1)) denotes the set of nodes that belong to the belief state of time slice
i when the succeeding time slice ist + 1, while bs(strct(i), strct(j)) denotes the set of
nodes that belong to the belief state of time slice schemai when the succeeding time slice
schema isj.

The general procedure for forward propagation for a time slice schema that instanti-
ates the first time slice is therefore as follows:

fwdtss(1),tss(2) = Σelim({X|X∈tss(1)\bs(tss(1),tss(2))}) ΠX∈tss(1)θ(X|pa(X)) ∗ λX .

The general procedures for Time Slice Schema 1 in Figure 7 arefwdstrct(1),strct(2) and
fwdstrct(1),strct(4). The procedure for Time Slice Schema 3 isfwdstrct(3),strct(4).

Now let us look at the case in which a time slice is to be added tothe existing DBN.
The table over all nodes that were not marginalized out by theprocedure that was just
applied is now passed on to the general procedure for theith time slice:

fwdtss(i−1)→tss(i),tss(i+1)(T) =

Σelim({X|X∈tss(i)\bs(tss(i),tss(i+1))})

Σelim({X|X∈bs(tss(i−1),tss(i))}) ΠX∈tss(i)θ(X|pa(X)) ∗ λX ∗ T .

T is a table over the set of nodes{X | X ∈ bs(tss(i− 1), tss(i))}, which in general was
computed by the procedure of the preceding time slice. The result of the functionfwd is a
table over the set of nodes{X | X ∈ bs(tss(i), tss(i + 1))}. The general procedures for
Time Slice Schema 2 in Figure 7 arefwdstrct(1)→strct(2),strct(2), fwdstrct(1)→strct(2),strct(4),
fwdstrct(2)→strct(2),strct(2), . . . , fwdstrct(4)→strct(2),strct(4), and the general procedures for
Time Slice Schema 4 in Figure 7 arefwdstrct(1)→strct(4),strct(2), fwdstrct(2)→strct(4),strct(2)

andfwdstrct(3)→strct(4),strct(2).
Again, to simplify exposition (especially for the following algorithm in 3.3) we in-

troduce here the notationfwdstrct(0)→strct(1),strct(2)(1) for fwdtss(1),tss(2).
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The polynomial for Time Slices1 throughL (with tss(0) = ∅) is therefore as follows:

Felim({X∈N})(λxi
, θ(xi|pa(xi))) = Σelim(bs(tss(L),tss(L+1)))(

fwdtss(L−1)→tss(L),tss(L+1)(. . .

fwdtss(1)→tss(2),tss(3)(

fwdtss(0)→tss(1),tss(2)(1)) . . .)) .

3.2 Backward Propagation

With the procedures for forward propagation, the impact of evidence in new time slices
can be transported to older time slices. First, an upward pass has to be performed from
the older time slice to the new one whose evidence is to be taken into account; then, a
downward pass from the newer time slice to the older one is required. Time slices can
be rolled up only after the downward pass. Hence, a constant-space evaluation with only
the general procedures for forward propagation is not possible.

Let us look at Time Slices 2 and 3 in Figure 3. We obtain as a procedure for backward
propagation for the last time slice:

bwdtss(3)→tss(2) = ΣA3,B3
θ(A3|A2)λA3

θ(B3|A3,A2,B2)λB3

(ΣC3
θ(C3|B3)λC3

) (ΣD3
θ(D3|B3)λD3

) .

In contrast to the general procedures for forward propagtion, we marginalize out all of
the nodes that belong to the time slice in focus. The result isa tableT over the Cartesian
product of the hypotheses of the parent nodes that belong to the preceding time slice—in
our example, the nodesA2 andB2.

Now we want to specify a procedure which takes into account the effects of the
following time slice on the preceding time slice. As was the case with the procedure for
the last time slice, we can marginalize out all of the nodes that belong to the time slice in
focus, but to keep demands on computation time and memory as low as possible, we first
marginalize out the nodes that do not belong to the belief state of this time slice, that is
bs(tss(2), tss(3)), then we multiply the tableT with the nodes of the belief state of this
time slice and then we marginalize out the nodes of the beliefstate of this time slice.

We obtain the following as a procedure for backward propagation for the second time
slice in our example in Figure 3:

bwdtss(3),tss(2)→tss(1)(T(A2B2)) =

(ΣA2
θ(A2|A1)λA2

(ΣB2
θ(B2|A2,A1,B1)λB2

T(A2B2)

(ΣC2
θ(C2|B2)λC2

) (ΣD2
θ(D2|B2)λD2

))) = T(A1B1) .

Now we want to capture the results obtained so far in a generalnotation. We omit
the general procedure for backward propagation from the last time slice, which is only
a special case of the general procedure for backward propagation from theith time slice
(1 ≤ i ≤ L):

bwdtss(i+1),tss(i)→tss(i−1)(T) =

Σelim({X|X∈bs(tss(i),tss(i+1))}) ΠX∈bs(tss(i),tss(i+1)) θ(X|pa(X))λX T

(Σelim({X|X∈tss(i)\bs(tss(i),tss(i+1))}) ΠX∈tss(i)\bs(tss(i),tss(i+1)) θ(X|pa(X))λX) .
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The following hold:

• in the casei = L: tss(L + 1) = ∅ andT = 1;

• in the casei = 1: tss(0) = ∅.

In the next subsection we will show how forward and backward propagation can be com-
bined.

3.3 Combined Forward and Backward Propagation

If we are interested in the belief values of nodes in time slice t of a DBN from the Time
Slices 1 throughL (with 1 ≤ t ≤ L), we can combine the procedures for forward
and backward propagation: We multiply the procedures for the polynomial for forward
propagation from Time Slice 1 throught with the procedures for the polynomial for
backward propagation from Time SlicesL throught + 1. Then we marginalize out the
nodesbs(tss(t), tss(t + 1)).

The polynomial to be evaluated at timet with evidencee1, . . . , et, . . . , eL is as fol-
lows:

Ft(e1, . . . , et, . . . , eL) = Σelim(bs(tss(t),tss(t+1)))(

fwdtss(t−1)→tss(t),tss(t+1)(

fwdtss(t−2)→tss(t−1),tss(t)(. . .

fwdtss(0)→tss(1),tss(2)(1) . . . ))

bwdtss(t+2),tss(t+1)→tss(t)(

bwdtss(t+3),tss(t+2)→tss(t+1)(. . .

bwdtss(L+1),tss(L)→tss(L−1)(1) . . . ))) .

The evaluation of the polynomial with constant space requirements for the time slice
t is obtained as follows:

1. F = 1;

2. Fori = 1 to t: Fneu = fwdtss(i−1)→tss(i),tss(i+1)(F); F = Fneu;

3. B = 1;

4. Fori = L downtot + 1: Bneu = bwdtss(i+1),tss(i)→tss(i−1)(B); B = Bneu;

5. Ft(e1, . . . , et, . . . , eL) = Σelim(bs(tss(t),tss(t+1)))(F ∗ B);

Here the same remarks hold as for the preceding algorithm. Wenow call the tableF
in the case of forward propagation andB in the case of backward propagation.
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Figure 8: Two arithmetic circuits that represent the procedure for forward propagation
(solid and dotted lines) and the polynomial (dotted, dashedand solid lines)—with and
without approximation, respectively. For the sake of clarity in the figure, the notation
bs(tss(i − 1), tss(i)) has been replaced withbs(i − 1, i).

3.4 Approximation

The procedures can be adapted so that we do not have to computethe tableT, which
passes on all information without approximation. Instead,several smaller tables can be
computed which are much less complex than the overall tableT and whose product
approximates the overall table. Boyen and Koller (1999) describe how the overall table
can be split up into smaller tables with minimal loss of information. They specify several
criteria (weak interaction, conditional weak interactionandsparse interaction) on the
basis of which it is possible to partition the set of nodes into several smaller sets, so as to
minimize the resulting information loss.

They “. . . show that the error in a belief state contracts exponentially as the process
evolves. Thus, even with multiple approximations, the error in our process remains
bounded indefinitely” (Boyen & Koller, 1998).

We will now show how this approximation can be incorporated into the proposed
algorithm. Figure 8(i) shows schematically the general procedure for forward propaga-
tion in theith time slice (fwdtss(i−1)→tss(i),tss(i+1)) without approximation. For the sake
of greater clarity in the figure, the notationbs(tss(i − 1), tss(i)) is replaced with the
shorter notationbs(i − 1, i), which we will continue to use in the following. The table
T(bs(i − 1, i)) was computed via the general procedure for forward propagation for the
previous time slice. This table now serves as input to the general procedure for forward
propagation in theith time slice, which yields the tableT(bs(i, i + 1)) as a result.

Figure 8(ii) shows the general procedure for forward propagation with approxima-
tion in the ith time slice. The tableT(bs(i − 1, i)) has been split up into the tables
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about time for me to
head on off to ...
Gate C38 ....

Well, uh, I guess it’s

Get something to eat

Get something to read

Look for a present

Where’s
Gate C38?!

?

Would you like to do
anything on the way?

Figure 9: Example of how the system READY adapts its behavior to the user’s perceived
resource limitations.

T(bs1(i − 1, i)), . . . ,T(bsm(i − 1, i)), which serve as input to the general procedure with
approximation. This procedure yields as a result the tableT(bs1(i, i + 1)), . . . ,T(bsn(i, i + 1)).

The approximation method illustrated here for forward propagation can be applied
analogously for backward propagation. The approximate procedures require less mem-
ory and less computation; both of these advantages speed up the overall inference pro-
cess.

4 Illustration of Practical Applicability

4.1 Example Application Domain

One promising aspect of the method presented above is the possibility of optimizing
DBNs for resource-limited devices. In this section, we willshow how this process can
work in practice. We first briefly introduce the prototype mobile dialog system READY,
whose requirements originally inspired the development ofour method. We will then
discuss how the properties of our method for handling DBNs can be exploited in the
context of a system like READY.

Our overall goal is to have a mobile assistance system present information to a user in
a way that is adapted to his or her current time pressure and cognitive load (cf. Bohnen-
berger, Brandherm, Großmann-Hutter, Heckmann, & Wittig, 2002). READY assesses
these resource limitations probabilistically on the basisof symptomsin the user’s behav-
ior, as well as on the basis of physiological signals.

The nature of the assistance provided by READY can best be explained with a con-
crete example. Figure 9 shows two travelers at a large international airport. The first
traveler is experiencing both time pressure and distraction because of the impending de-
parture of his flight. For him, the second presentation shownin the figure is probably
suitable. Since the second traveler seems to have a lot of time and attention available,
the first presentation may be more suitable. While directingthis second passenger to the
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Figure 10: Overview of a dynamic Bayesian network for the recognition of a user’s
resource limitations. (Explanation in text.)

gate, the system can lead him past selected shops, so that he can get some useful things
done on the way to the gate.

In this example, the differences between the two travelers can be recognized mainly
on the basis of features of their speech such as the length of the utterances, the presence
of pauses, and the rate of articulation.

The first person is speaking fast, loud and tersely. These areindicators of both time
pressure and cognitive load. In the READY project, several BNs have been developed
for the assessment of time pressure and cognitive load. These BNs serve as time slices
for the DBN. A BN for the interpretation of speech symptoms was learned on the basis
of two experiments (see Müller, Großmann-Hutter, Jameson, Rummer, & Wittig, 2001;
Kiefer, 2002), while another BN for the interpretation of features of manual input be-
havior was constructed on the basis of a literature study (see Lindmark, 2000). The
combination of these two BNs allows READY to make inferences on the basis of mul-
timodal imput. Other BNs to handle data from an eye tracker and from physiological
sensors are currently being developed. Figure 10 shows two time slices of a DBN that
handles speech and motor symptoms. In the current version ofthe system, a time slice
typically comprises about 40 nodes, each of which has 2, 3, or4 states.

Let us look more closely at the nodes in time sliceN + 1. The nodesCognitive Load
andTime Pressure model the resource limitations of the user. These nodes are realized
asdynamic nodes, because they have an impact on the next slice. These user properties
vary over time and cannot be observed directly. They can be estimated on the basis of
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symptoms in the behavior of the user, such as pauses in speechor the use of high force
in tapping on the screen. The nodes that represent symptoms in behavior aretemporary
nodes. The static nodesshown in the figure arebase ratesof the user—for example,
how often this user typically produced filled pauses (e.g.,uhm). These properties do not
change over time, but they are estimated with increasing accuracy as more information
arrives. They have the same impact on each time slice.

Evidence of the types shown in the figure is acquired each timethe user produces a
spoken utterance or provides manual input. A greater processing challenge is raised by
data from physiological sensors, which yield signals concerning variables like the user’s
heart beat, skin conductance, and muscle tension.

Data of ths type is typically acquired at a high rate. Insteadof being used directly for
instantiation of variables in the DBN, the signals must firstbe subjected to preprocessing
that yields somewhat higher-level data. For example, preprocessing of the electrocardio-
graphic signal yields a measure of heart rate. But even thesehigher-level variables can
require a potentially large number of instantiations of thecorresponding temporary nodes
of the DBN. Therefore, we need a fast inference algorithm forthe solution of the DBNs.
And if we want to evaluate a DBN fast on a PDA, we have to adapt the computation to
the limitations of the PDA (e.g., with respect to computation time and memory).

Ramos, Cozman, and Ide (2002) present an algorithm for the processing of static
BNs on a PDA that can deal with dynamically changing limitations in the availability
of the resources time and memory. The approach involves the combination of various
algorithms that operate on different parts of the network, in a way that depends on the
availability of resources. These algorithms exhibit anytime and anyspace behavior.

By contrast, our procedure does not exhibit anytime or anyspace behavior. The DBN
has to be adapted in advance to the resource limitations of the PDA, so as to ensure
as far as possible that the inference can be performed withinthe limits imposed by the
device. In the next subsection, we will show how such adaptation can be achieved with
the methods presented in this paper.

4.2 Exploiting the Extended Approach

Figure 11 gives an overview of the various types of computation that need to be per-
formed in a system like READY. Two types of computation can be distinguished: those
that are performed offline on a PC and those that are performedonline on a PDA used by
the user.

Let us consider first the offline computations. If we have a setof time slice schemas,
the dependencies among them, and the set of possible evidence and query nodes, we can
compute a set of raw polynomials with the polynomial generation algorithm that was
presented above. In READY, the set of time slice schemas would comprise the Bayesian
networks for the recognition of time pressure and cognitiveload on the basis of speech,
manual input behavior, and physiological signals. The dependencies among the time slice
schemas are represented in a directed graph like the one in Figure 7, which determines
the orders in which the time slice schemas can be instantiated.

In the airport scenario introduced above, we are interestedonly in the belief values
of the dynamic nodesCognitive Load andTime Pressure. Therefore, all that is needed is
an upward pass in the corresponding arithmetic circuit and the computation of the table
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Figure 11: Online and offline computations for the resource-limited processing of DBNs.

T. From the table entries, the desired belief values can be obtained. In this case, the
downward pass can be omitted.

In a second step in the offline computations, the set of raw polynomials can be
adapted to the resource limitations of a PDA through approximation. The relevant prop-
erties of the PDA must have been entered manually, for example on the basis of the
manufacturer’s specifications. We obtain a set of optimizedpolynomials and an evalua-
tion algorithm. For the set of optimized polynomials, the system can perform sensitivity
analyses3 to compute a priority list of combinations of pieces of evidence ordered by their
impact on particular query nodes: We want to avoid the instantiation of combinations of
evidence that will have little or no impact.

The set of optimized polynomials, the priority list, and theevaluation algorithm are
then passed to the PDA. Depending on the current memory and time limitations, the
currently available evidence, and the selected query nodes, an appropriate polynomial is
selected out of the set of optimized polynomials by the selection algorithm.

Suppose that, during the user’s interaction with the PDA, more evidence is received
within a given time interval than the DBN is capable of processing. In this case, a subset
of pieces of evidence should be used for instantiation; thissubset should be the one that is
likely to exert the greatest influence on the query nodes, according to the priority list. If
this situation occurs frequently, the reason may be that thespecification of the computing

3The possibility of performing sensitivity analyses of thissort is one of the general strengths of Darwiche’s
differential approach. The discussion of how the sensitivity analyses would look in this particular case would
exceed the scope of this paper.
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resources of the PDA was too optimistic; in this case, it may be better to create a revised
specification of the resource limitations, which will in turn lead to a greater degree of
approximation of the polynomials themselves.

During the interaction of the user with the PDA, it may be possible for the system to
recognize typical features of the way in which the current user uses the device. For ex-
ample, a given user may consistently avoid using speech recognition, restricting himself
entirely to pen input. The next time the PDA is connected to the PC, it can transmit its
accumulated knowledge about the user to the PC. The system onthe PC can then update
its list of possible combinations of evidence as well as its assessment of the PDA’s re-
source limitations, and it can compute a new approximation of the polynomials as well
as a new priority list of combinations of evidence. When the user starts using the PDA
again, the system will have adapted itself better to the requirements and properties of the
user.

5 Summary

We have shown how Darwiche’s differential approach to the evaluation of Bayesian net-
works can be extended to dynamic Bayesian networks. We have specified the procedures
that can be used to determine the relevant polynomials for arbitrarily large DBNs. Com-
putations for partial polynomials can be reused.

Through the use of these formulas, we can perform forward andbackward propaga-
tion (as well as a combination of the two). We can also roll up older time slices and
other superfluous network structures while ensuring constant space requirements in the
evaluation of the polynomials. The other advantages of the differential approach are
now also available for DBNs, for example, efficient methods for sensitivity analysis (see
Darwiche, 2000, 1999).

We have also described how the method presented can be used toadapt the processing
of DBNs to the resource limitations of a mobile device.
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