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Abstract

We presentissuesand initial resultsof our re-

searchinto methodsfor learning Bayesiannet-
works for usermodelingon the basisof empir

ical data,focusingon issuesthat are especially
importantin the context of usermodeling. These
issuedncludethetreatmenbf theoreticallyinter-

pretablehiddenvariables,ways of learningpar

tial networks and combiningtheminto a single
network, ways of taking into accountthe special
propertiesof datasetsaacquiredthrough psycho-
logical experiments,and ways of increasingthe
efficiengy andeffectivenessf the learningalgo-
rithms.

1 Intr oduction

1.1 Goals

This paperfocuseson a type of machinelearningtechnique
that has so far seldombeenemployed for learning about
users: the learningof Bayesiannetworks (BNs) on the ba-
sis of empiricaldata. The generalproblemof learningBNs
hasbeenatopicof intensive studyin recentyears! AndBNs
havefrequentlybeenemployedto modelusergseeJameson,
1994 for a surwey of this work up through1995). But sofar
therehave beenonly afew stepsn thedirectionof combining
thesetwo linesof research.

In several systems,the conditional probability tables
(CPTs)of a BN have beencomputedmore or lessstraight-
forwardly on the basisof empiricaldata(see,e.g.,[de Rosis
etal., 1992;Albrechtet al., 1998;Lau andHorvitz, 1999).
Althoughtheseefforts have hadto dealwith sometricky is-
sueg(e.g.,the potentiallyhugesizeof the CPTsof [Albrecht

*This researchs beingsupportedy the GermanScience~oun-
dation (DFG) in its Collaboratve ResearchCenteron Resource-
Adaptive Cognitive ProcessesSFB 378, ProjectB2, READY. The
experimentdescribedn Section2 was designecand conductedn
collaborationwith Leonie March and Ralf Rummerof the Depart-
mentof Psychology University of Saarbiicken. We thankthe re-
viewersfor their helpful suggestions.

1 The mary overviews includethoseof Buntine[1996, Hecler-
man[199, andRussellandNorvig [1995,chap 5].

etal., 1994), they have notinvolvedtheapplicationof theso-
phisticatedBN learningtechniquegshatarediscussedn the
overviawscitedabove.

To seethis work in the contet of the presentworkshop,
notethata BN for usermodelingalmostalways represents
generalrelationshipsamong variables,which are assumed
to apply to all usersthat the systemis likely to encounter
The learningof BNs thereforediffers in an importantway
from mostotherapplicationsof machindearningtechniques
to usermodeling: Normally, a machine-learning-basadser
modeling systemincludesa learning componentthat pro-
cesses large amountof dataaboutanindividual user The
systems performancecomponenthenusesthe resultsfrom
thelearningcomponento make decision-relgeantpredictions
aboutthatuserin a particularsituation.

In the approachpursuedhere, the data-hungrylearning
componenprocesseslatafrom a sampleof usersto learna
BN thatappliesto userdn generallt is only theperformance
componenfi.e., thelearnedBN) thatrequiresdataaboutthe
individual user for whom predictionsare to be made. A
Bayesiannetwork is in principle capableof deriving useful
(thoughuncertain)predictionson the basisof a very small
numberof obsenations. Consequentlythis approactcanbe
usedin situationsin which only very limited dataaboutthe
individual userareavailable. An examplewould be a situa-
tion in which an assistanceystemoffershelpto a userwho
is usingthe systenfor thefirst (andperhapnly) time.

In the long run, the contrastjust discussednay become
lesssharp: It may prove worthwhile in somesituationsto
learna differentBN for eachindividual user But for theini-
tial stepsat learningBNs for usermodeling,it seemdestto
focusonuserindependemetworks—bothbecausef thead-
vantaggust mentionedandbecausé¢herealreadyexist mary
well-understooaxamplesof suchnetworks.

1.2 Focuson Networks With Hidden Variablesand
Known Structure

Learningtechniquedor Bayesiannetworks addressone or
bothof two basicquestions:

1. What structureis the network supposedo have—i.e.,
what variablesare to be representedandwhat causal
links existamongthem?

2. How canthecausalelationshipdequantifiedin terms
of CPTs?



Someof thetechniquepresupposthatall of thevariables
in the network are observablei.e., that information about
their valuesis availablewhenthe network is learned.As we
will arguebelaw, in the context of usermodelingthereare
several advantagedo the introductionof hidden(unobserv-
able)variableg(e.g.,variablesthatreferto the users level of
knowledge,specificbeliefs, generalinterestsand/orcurrent
goals): Their inclusion canleadto more parsimoniousand
interpretablenetworks, althoughit also entailsa numberof
technicalproblems.

We considerhereonly the casewherethe structureof the
to-be-learnedchetwork is specifiedin adwance,so that only
the CPTshave to belearned.Onereasoris thatthis situation
is lesscomplec thansituationsin which someaspectf the
structureof thenetwork arelearnedaswell (seeg.g.,[Cooper
andHerslovits, 1997; [Heckerman1995). A secondeason
is that specifyingthe structurein advanceis oneway of en-
hancingtheinterpretabilityof the resultingnetworks.

1.3 Issues

The job of learningBNs for usermodelingraisesa number
of issuesthat appearto be moreimportantin this particular
context thanfor BN learningin general:

1. How can methodsborroved from experimentalpsy-
chologybeappliedsoasto yield suitableinputfor BN learn-
ing technigues®henwe arelearningabouthumancognitive
processest makessensdo leveragetherich methodologyof
experimentabsychologywhencollectingthe datathatareto
sene asinput to the learningtechniques. The samemeth-
ods of controlling and manipulatingvariablesthat enhance
the interpretabilityof experimentaldatacansimilarly make
thelearningof BNs moreefficient.

2. How canthelarge individual differenceghat typically
exist betweenusers(and betweenexperimentalsubjects)pe
takeninto accountsothatthe learnednetwork will beappli-
cableto usersotherthanthosewho suppliedthe datafor the
learning?

3. How canwe ensurghatthelearnednetworksareinter-
pretable? Especiallywhen hiddenvariablesareinvolved, a
learningtechniquemay comeup with a solutionthatyields
satishctoryresultsbut which doesnt fit with ary theoretical
interpretatiorof thevariablesnvolved. But theoreticainter
pretabilityis desirabldn thatit allows usto relatethelearned
networks to large amountsof relevant existing knowledge,
suchasthatfrom psychologicabndeducationatesearch.

4. How canwe learn partial networks and then combine
the results? When dealingwith mostrealistic scenariosn
usermodeling,it will beimpossibleto gatherempiricaldata
for entirenetworks at once. In particular psychologicakx-
perimentsare typically designedto investigateonly a few
variablesat atime. Thereforeaninterestingproblemis that
of learningpartial networks and putting thesepartstogether
into a single BN. Similarly, it may happenthat previousre-
searchhasalreadyyieldedadequaténformationconcerning
onepartof anetwork. In thatcase |t maybe possibleto re-
strict learningto the restof the network andsubsequentlyo
combinetheparts.

5. How canthelearningtechnique®eadaptedothatthey
work with acceptablefficiengy? Sincetechniquedor learn-

ing networks with hiddenvariablesinvolve iterative search
througha spacewith very high dimensionalityandwith mary
local maxima,they canraiseseriousproblemsof computa-
tional compleity that canthreatentheir applicability, even
if they only needto be appliedoff-line. Someapproaches
to solving theseproblemsare not specificto usermodeling,
but othersareconnectedvith the above-mentionedssuesof
ensuringnterpretabilityandcombinabilityof networks.

Sincethework describechereis still in progressyve will
not offer firm answergo all of thesequestionsere.Instead,
we will discusgheresultsachievedsofar andtheideasthat
we arecurrentlypursuing.

1.4 Example Domain

Although the issueswe are addressingare not specificto

ary particularapplicationdomain,for concretenessie are
using a particular applicationscenario,that of the system
READY (see,e.g.,[Jamesoret al., 1999). In this domain,
the focus of the usermodelingis on the users situationally
determinedesouce constaints—specifically limitations of

time andworking memory(WM). The key hiddenvariables
in READY's dynamicBNs refer to theselimitations. Until

now, the entriesof the conditionalprobability tables(CPTs)
of theseBNshavebeerbasednacombinatiorof (a) analysis
of relevantpreviousexperiments(b) our own largely qualita-
tive empiricalstudiesand(c) theoreticakconsiderationsOur
goalin applyingBN learningtechniquess not simply to re-

placetheseothersourcesf knowledgebut to combinethem
with amoredirectuseof empiricaldata.

In thefull READY systemtheBNsarerathercomplex dy-
namic networks that include dozensof variables. To geta
grip on the problemsof BN learningin this context, we be-
ganwith thedataof anexperimenthatfocusedon only afew
of thesevariables.

2 Summary of Experiment and Results

It only makessensdor asystemsS to try to adapto thework-

ing memoryload of a user!{ if differentsystemactionscan
bemostappropriateyivendifferentlevelsof workingmemory
load. For example,intuitively onewould expectthatwheni/

is suffering from high WM load, S’s instructionsshouldbe
designedo besimplerandeasietto execute gvenif this sim-

plicity leadsto alongerexecutiontime for theinstructions.

2.1 Method

We investigatedhis hypothesisusingthe experimentaltask
shavnin Figurel. In themiddleandbottomof thescreenwve
seethe buttonsusedfor the subjects’primary task,whereas
atthetopthereis a“lamp” for the secondaryask.

In the primarytaskthe subjecthadto click on 2 to 4 but-
tons, accordingto (prerecorded}polen instructionsof the
system(e.g.“SetX to 3..."). A similar situationcouldarise
in arealapplicationif S, for example,offeredassistanceia
a telephonehot-line. In this case the buttonson the screen
would containmeaningfullabels; abstractabelswere used
in the experimentto eliminateary effectsof differencesn
subjects’prior knowledge.
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Figure 1. Main screerusedfor the experimentdescribedn
Section2.

Stepwise: Bundled:

S Set X to 3. S: Set X to 3,
U ... [OK] setMto 1,
S SetMto 1. setVto 4.
U ... [OK] U .........[OK]
S: SetVto4.

U ... [OK]

Figure 2. lllustration of the two presentatioormodesfor in-
structions.

The secondarytaskwas performedconcurrentlywith the
primary task: The “lamp” flashedintermittently; wheneer
two successie flasheshadthe samecolor, the subjectwasto
presshespacebar A comparablalistractionin arealisticsit-
uationmightinvolve, for example,the needto monitorsome
processunningonthe computeror to communicatevith an-
otherperson.

Threeindependenvariablesveremanipulated:

1. Numberof stepsin ead task: In eachtask,either2, 3,
or 4 settingshadto bemadein succession.

2. Presentatiormode: As is illustratedin Figure2, in the
stepwisanode,theinstructionfor eachstepwasspolensep-
arately;the next instructionwasgiven only after the subject
hadexecutedheinstructionandclickedonthe“OK” button.
In the bundledmode theinstructionsfor all 2 to 4 stepsof a
giventaskwerespolenwithout interruption;only aftercom-
pletingthe laststepdid the subjectclick onthe“OK” button.

3. Presenceof secondarytask: The secondantaskonly
hadto beperformedn half of theblocksof trials;in theother
half, thelampdid not changecolor.

Two dependentariableswill beconsideredhere:

1. Error in the primary task: This binaryvariablehasthe
value“True” whenthe subjectpresseall of theright buttons
for agiventask.

2. Executiontime for the primary task: This is the time

betweerthe momentthe systembeganspeakinghe instruc-
tionsfor ataskandthemomentthe subjectpressedhe“OK”
buttonto signalcompletionof thetask.

2.2 Summary of Results

A traditionalanalysisof variancerevealedthe following sig-
nificantmain effects:

1. A largernumberof stepspertaskleadsto longertimes
(obviously)andmoreerrors.

2. The presencenf a distractingsecondarytask likewise
increasedothexecutiontime anderrors.

3. The stepwisepresentatiormode leadsto longer exe-
cutiontimes (mainly becausef the additionaloverheadn-
volvedin having to confirmthe completionof eachstep),but
it alsoreduceghe numberof errors.A plausibleexplanation
for thelatterresultis thatthe subjectneedso storelessinfor-
mationin working memoryandsorunslessrisk of forgetting
aninstruction.

More interestingthanthesemain effectsis the significant
interactionbetweenpresentatiormode and secondarytask:
The increasen errorsassociatedvith bundledpresentation
is muchgreatemwhenthereis a secondaryask;thatis, with-
out a secondarytask subjectsare able to managethe more
demandindundledpresentatiomuite well.

Roughlyspeakingthe practicalimplicationis thata sys-
temshouldtendto give stepwisdnstructionswheni/ is per
forming a secondarytask (to avoid an excessve numberof
errors)but shouldtendto give bundledinstructionsotherwise
(to save time). The choicethatshouldbe madein eachindi-
vidual casedepend®n the relative importanceof speedand
accurag, amongotherfactors.

A traditionalanalysiof varianceexposeghemajorcausal
relationshipsandhelpsto assessheir generality But it does
notdirectly yield amodelthatwould allow a systemo make
decisionor to interpreta users behavior. Thesegoalscanbe
attainedwhenlearningtechniquegor Bayesiametworksare
appliedto the samedata.

3 Learning a BayesianNetwork Without
Hidden Variables

In afirst, straightforvardeffort, we constructecd BN without
hiddenvariables(seeFigure 3). The independentariables
of the experimentare representedy the nodesnumBER oF
STEPS, PRESENTATION MODE and SECONDARY TAsk. Two of the
otherthreenodesrepresenthe dependentariablesof the ex-
periment. Becauseof the large interindividual variationin
executiontimes(representetly the nodeexecution TIME) we
introducedavariablethatrepresents users averagetaskex-
ecutiontime (INDIv AVE EXECUTION TIME), Whichin turnreflects
their overall speedf processingBeforelearningtook place,
the valuesof this variablewere computedfor eachsubject
straightforvardly onthe basisof theraw data.Consequently
thisvariablesenedasanobsenablevariablefor the purpose
of learning,althoughit would not be obserablein anappli-
cationcontext.

Generallyspeakingpneadwantageof arrangingfor learn-
ing to take placein anexperimentatontext is thatsomevari-
ableswhich are (partially) hiddenin an applicationcontext



Number_of Steps

Bundled
Stepwise

Presentation_Mode

Secondary_Task
Yes 100

/w - EEER

Indiv_Ave_Execution_Time
High 146 m

Error_in_Task

Execution_Time

Yes 47.3
Mo 52,7 mee : 9 272

Medium 38.5
Loy 469 j——

/

Figure 3. Exampleinstantiationof a Bayesiametwork without hiddenvariabledearnedbon the basisof the experimentablata.
(Thethreenodeswith a darker graybackgrounchave beeninstantiated.)

canbe madeobsenable. Oncethe CPTshave beenlearned,
theresultingnetwork canbeusedin situationsn whichthese
variablesarenot obserable. For example,while modelinga
particularuserl/ in anapplicationsituation,S will know that
U hassomeparticulannbiv AvE EXECUTION TIME, but S will ini-
tially have only a highly uncertainestimateof the value of
this variable. This estimatewill be updatedn the courseof
theinteraction.

Note that, if this variablewere not includedin the net-
work structure the learningalgorithmwould not be ableto
take into accounindividual differencedetweersubjects By
supplyingthe subjects base-ratespeedaspartof eachobser
vation,we arehelpingthe algorithmto explain the obsened
variationin theexecutiontimes.Also, by explicitly modeling
individual differencesthelearnedhetwork will bebetterable
to dealwith unknowvn userswhetherit knowstheir base-rate
speedn adwanceor hasto learnit in the courseof theinter
action.

In this initial study we usedthe NETICA? built-in-
algorithmfor learningBNs. This algorithmpresupposethat
no variablesarehidden.It computeghe (conditional)proba-
bilities on the basisof frequenciesn the data.

NotsurprisinglytheCPTslearnedy thisalgorithmreflect
thesamepatterndhatwereuncoveredby theanalysisof vari-
ancesummarize@bove. Theaveragenegative log-likelihood
describingthe fit betweenthe network and the 1728 cases
processeds 4.89. Althoughthereis no compactway of dis-
playing all of the learnedCPTs,Figure3 illustrateshow the
network reproducesneof theimportantresults:thehighfre-
gueng of errorsthatis causedy a secondaryaskwhenthe
primary taskis complex andthe presentatiormodeis bun-
dled.

2NETICA is a commercialtool from Norsys Software Corp.
(http://lwww.norsys.comfor working with Bayesiannetworks and
influencediagrams.

4 Learning a BayesianNetwork With Hidden
Variables

The network shavn in Figure 3 simply reproduceghe pat-
ternsin theempiricaldata,withoutreflectingary sortof the-
oretical explanation. As was suggestedibore, a plausible
theoreticalexplanationmight refer to limitationsin the sub-
jects’ ability to storeinstructionsin working memorywhile
performinga secondarytask: The combinationof bundled
presentatiormnda secondaryasktendsto overloadworking
memory leadingto a breakdaevn of performance.

A network that explicitly modeledthe hiddenvariableof
WM load could have the following advantages:

1. A hiddenvariablecanmake thepostulatedelationships
in the network more interpretableby relatingthemto prior
theoreticabndempiricalknowledge.

2. A hiddenvariablecanincreasethe parsimoly of the
network andfacilitatetheadditionof new variables Thereare
mary otherfactorsthatinfluenceWM load and mary other
symptomsof WM overload. A network thatincludesa link
betweereachcauseandeachsymptommaybeacceptablas
longasit is assmallastheoneshavn in Figure3. Butwith an
increasinghumberof variablesthe numberof links would at
somepointexceedanacceptablémit, from bothatheoretical
anda practicalpoint of view.

3. A hiddenvariablecan sene asa point at which two
independentlyearnedhetworkscanbejoined. To take anes-
pecially simple case,supposehat eachof two independent
learning studieshasyielded a network that expressegela-
tionshipsbetweenworkiNg MEMORY LOAD and several symp-
tomsof highload (whichfigureaschildrenin thelearnedet-
work). It maythenbepossiblego combinethesawo networks
straightforvardlyinto asinglenetwork thatincludeswoRrkinG
MEMORY LoAD togetherwith all of the symptoms.Therefore,
hiddenvariablesappearto be animportantpartof a solution
to the problemof how to combineindependentlyearnedpar
tial networks.

4. A hiddenvariablemay be decision-relgantin its own
right. For example,it may be desirablefor S to avoid high
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Figure 4. Exampleinstantiationof a Bayesiametwork with a hiddenvariablelearnedwith the EM algorithmon the basisof

thesamedataasthenetwork in Figure3.

(Thefour nodeswith a darker gray backgrounchave beeninstantiated.)

WM loadin U simply becausédigh WM loadis subjectvely
unpleasantor /. In thatcasewe will wantS’s decisionpro-
cedureto referto its belief aboutl/’s WM load. This is not
possiblef thereis no correspondingariablein the network.

To explorethepossibilitiesof learninganetwork with such
a hiddenvariable,we specifieda structurethatincludedthe
variableworkING MEMORY LOAD (seeFigure4). It would be
simplestif all effectsof theindependentariableson thede-
pendentvariableswere mediatedoy WORKING MEMORY LOAD.
In reality, thereis anindependenttactorthataffectsexecution
time anderrorfrequeng: simply the numberof actionsthat
U hasto perform. (More actionsrequiremoretime andgive
moreopportunityto make errors.)This variable Jabeledvum-
BER OF PRESSES in Figure4, essentialljindexesthenumberof
button pressegon the mouseandthe keyboard)thatthe user
hasto male.

In the context of our experimentNUMBER OF PRESSES iS an
obsenablevariable,sincewe know exactly whatactionsthe
subjectwasrequiredto performandwhatactionsin factwere
performed.In someapplicationcontets, the corresponding
variable might be only partly obsenable. For example,/
might be performinga secondaryaskaboutwhich S hasno
information.Justaswith thevariableinbiv AvE EXECUTION TIME
(seeSection3d), it is corvenientto be ableto treatnumMBER oF
PRESSES asanobsenablevariablefor the purposeof learning.

4.1 Learning With the EM Algorithm

The algorithm which is apparentlymost widely used for
learningthe CPTsof BNs with hiddenvariablesis the EM
(expectationmaximizatiol algorithm (see, e.g., [Mitchell,

1997). We implementedthis algorithn?® andhadit learn
a network with the structureshovn in Figure 4. The net-
workslearnedwith EM aresomavhatlessaccuratehanthe
learnedully obsenablenetworks. (Theaveragenegativelog-
likelihood,over 1728casesijs 5.15,comparedvith 4.89for
thenetwork discussedbection3.)

4.2 Learning With the APN Algorithm

For purpose®f comparisonye alsoimplementedhe Adap-
tive ProbabilisticNetworksalgorithmdevelopedby Binderet
al. [1997, whichis a gradientdescentethodfor determin-
ing a local optimumregardingthe CPT entries. The results
wereroughly similar to thoseobtainedwith EM. (The aver

agenegative log-likelihood, over 1728 casesjs 5.26, com-
paredwith 5.15for EM.)

4.3 ExampleUseof a Learned Network

Figure 4 illustrateshow the learnednetwork malkes plausi-
bleinferencesvheninterpretingthebehaior of anindividual
user Considetthe situationwheres is giving instructionsto
U but S doesnot know whether{ happengo be working
on somesecondantaskat the sametime. S will thenwant
to judgethelikelihoodof sucha secondaryask,soasto be
ableto adaptthe form of its instructions.Relevantevidence
is availableif S getsfeedbaclontheaccurag andspeedvith
which i/ performsthe maintask. In thatcaseS caninstanti-
atethe variableserror IN Task andexecuTion TIME. Figure4
shavs §’s assessmentsdtertheobsenationof anerrorby U.

3TheimplementedEM algorithmusesNETIcA’sfacilitiesto per
form computation®n intermediatestatesof the to-be-learnedet-
work. For exampleNETICA’sinferencealgorithmis heavily usedto
computebeliefsof network nodes.



NotethatS’s assessmertf Z/’s WM loadis highandthatthe
likelihoodthati/ is performinga secondaryaskis alsoseen
asfairly high.

4.4 Summary of ExperienceWith Both Algorithms

Experiencavith theEM andAPN algorithmsshavedtheim-

portanceof exploiting prior knowledgeaboutthe quantitatve
causakelationshipsamongthe network variables.Theinitial

CPTswith which the algorithmstartedon its searchstrongly
influencedhefinal result,especiallywith the APN algorithm.
This effectis dueto the presencef alarge numberof local

optimain the searchspace We hopethatthe problemcanbe
alleviatedin partby the useof prior knowledgeto restrictthe
searclspacein additionto specifyinginitial CPTsthatcorre-
spondo ourtheoreticalnterpretatiorof thehiddenvariables,
we canspecifyconstraintson the CPTsthatthe learningal-

gorithmwill berequiredto respect.

A someavhatanalogougproblemis dealtwith by Druzdzel
andvander Gaag[1994. In the contet of knowledgeelici-
tationfor Bayesiametworks,they presenta methodfor inte-
gratingvarioustypesof knowledgeabouttherelevantproba-
bilities. Onetype of knowledgeis the qualitative opinionsof
expertsconcerningcasesvhereonevariablehasa positive or
negative influenceon anothewariable.Druzdzelandvander
Gaagshowv how suchjudgmentscanbe representeéh terms
of constrainton the correspondingonditionalprobabilities.
We arenow exploring thefollowing approach:

1. Constraint$or ournetworksarerepresentethathemat-
ically in similarway.

2. Usingthe APN algorithm,we addto the negative log-
likelihood metric for the evaluation of a network a
penaltyterm that reflectsthe extentto which the net-
work violatesthe constraints.

3. The searchalgorithm shouldthentendto avoid solu-
tions that violate the constraints.(How hardthe con-
straintsare will dependon the relative weight of the
penaltyterm.)

Thesemeasuredo increasethe accurag of the learned
networks should also tend to increasetheir intepretability
becausdahey shouldensurethatthe learningalgorithmwill
comeup with a“theory” thatis compatiblewith ourtheoreti-
cal preconceptions.

5 Concluding Remarks

This paperhasdiscusse@ numberof resultsandideascon-
cerningtheissuedormulatedin Sectionl.3. In keepingwith

the purposeof a workshop,the discussiorraisesmoreques-
tionsthanit answers.

Onthewhole,we canseethatapplyingBN learningtech-
niguesin a usermodelingcontet is not a straightforvard
technicalproblem. It requiresattentionto the characteristic
featuresof (a) dataconcerninghumanperformanceand (b)
the contexts in which usermodelingcomponentsre devel-
opedandapplied. Doing justiceto thesefeaturesn turnre-
guiresacertainamountof technicalinnovation.
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