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Abstract

We presentissuesand initial resultsof our re-
searchinto methodsfor learningBayesiannet-
works for usermodelingon the basisof empir-
ical data, focusingon issuesthat are especially
importantin thecontext of usermodeling.These
issuesincludethetreatmentof theoreticallyinter-
pretablehiddenvariables,waysof learningpar-
tial networks and combiningthem into a single
network, waysof taking into accountthespecial
propertiesof datasetsacquiredthroughpsycho-
logical experiments,andwaysof increasingthe
efficiency andeffectivenessof the learningalgo-
rithms.

1 Intr oduction

1.1 Goals

This paperfocuseson a typeof machinelearningtechnique
that has so far seldombeenemployed for learning about
users: the learningof Bayesiannetworks (BNs) on the ba-
sis of empiricaldata. The generalproblemof learningBNs
hasbeenatopicof intensivestudyin recentyears.1 And BNs
havefrequentlybeenemployedto modelusers(see[Jameson,
1996] for a survey of this work up through1995).But sofar
therehavebeenonly afew stepsin thedirectionof combining
thesetwo linesof research.

In several systems, the conditional probability tables
(CPTs)of a BN have beencomputedmoreor lessstraight-
forwardly on thebasisof empiricaldata(see,e.g.,[deRosis
et al., 1992;Albrechtet al., 1998;Lau andHorvitz, 1999]).
Althoughtheseefforts have hadto dealwith sometricky is-
sues(e.g.,thepotentiallyhugesizeof theCPTsof [Albrecht
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etal., 1998]), they havenotinvolvedtheapplicationof theso-
phisticatedBN learningtechniquesthat arediscussedin the
overviewscitedabove.

To seethis work in the context of the presentworkshop,
note that a BN for usermodelingalmostalwaysrepresents
generalrelationshipsamongvariables,which are assumed
to apply to all usersthat the systemis likely to encounter.
The learningof BNs thereforediffers in an importantway
from mostotherapplicationsof machinelearningtechniques
to usermodeling: Normally, a machine-learning-baseduser
modeling systemincludesa learning componentthat pro-
cessesa largeamountof dataaboutan individual user. The
system’s performancecomponentthenusesthe resultsfrom
thelearningcomponenttomakedecision-relevantpredictions
aboutthatuserin a particularsituation.

In the approachpursuedhere, the data-hungrylearning
componentprocessesdatafrom a sampleof usersto learna
BN thatappliesto usersin general.It is only theperformance
component(i.e., thelearnedBN) thatrequiresdataaboutthe
individual user for whom predictionsare to be made. A
Bayesiannetwork is in principle capableof deriving useful
(thoughuncertain)predictionson the basisof a very small
numberof observations.Consequently, this approachcanbe
usedin situationsin which only very limited dataaboutthe
individual userareavailable. An examplewould bea situa-
tion in which anassistancesystemoffershelp to a userwho
is usingthesystemfor thefirst (andperhapsonly) time.

In the long run, the contrastjust discussedmay become
lesssharp: It may prove worthwhile in somesituationsto
learna differentBN for eachindividualuser. But for theini-
tial stepsat learningBNs for usermodeling,it seemsbestto
focusonuser-independentnetworks—bothbecauseof thead-
vantagejustmentionedandbecausetherealreadyexist many
well-understoodexamplesof suchnetworks.

1.2 Focuson Networks With Hidden Variablesand
Known Structure

Learningtechniquesfor Bayesiannetworks addressone or
bothof two basicquestions:

1. What structureis the network supposedto have—i.e.,
what variablesareto be represented,andwhat causal
links exist amongthem?

2. How canthecausalrelationshipsbequantifiedin terms
of CPTs?



Someof thetechniquespresupposethatall of thevariables
in the network are observable, i.e., that information about
their valuesis availablewhenthenetwork is learned.As we
will arguebelow, in the context of usermodelingthereare
several advantagesto the introductionof hidden(unobserv-
able)variables(e.g.,variablesthatreferto theuser’s level of
knowledge,specificbeliefs,generalinterestsand/orcurrent
goals): Their inclusioncan lead to moreparsimoniousand
interpretablenetworks, althoughit alsoentailsa numberof
technicalproblems.

We considerhereonly thecasewherethestructureof the
to-be-learnednetwork is specifiedin advance,so that only
theCPTshave to belearned.Onereasonis thatthissituation
is lesscomplex thansituationsin which someaspectsof the
structureof thenetworkarelearnedaswell (see,e.g.,[Cooper
andHerskovits,1992]; [Heckerman,1995]). A secondreason
is that specifyingthe structurein advanceis oneway of en-
hancingtheinterpretabilityof theresultingnetworks.

1.3 Issues
The job of learningBNs for usermodelingraisesa number
of issuesthat appearto be moreimportantin this particular
context thanfor BN learningin general:

1. How can methodsborrowed from experimentalpsy-
chologybeappliedsoasto yield suitableinput for BN learn-
ing techniques?Whenwearelearningabouthumancognitive
processes,it makessenseto leveragetherich methodologyof
experimentalpsychologywhencollectingthedatathatareto
serve as input to the learningtechniques.The samemeth-
ods of controlling and manipulatingvariablesthat enhance
the interpretabilityof experimentaldatacansimilarly make
thelearningof BNsmoreefficient.

2. How canthe large individual differencesthat typically
exist betweenusers(andbetweenexperimentalsubjects)be
takeninto account,sothatthelearnednetwork will beappli-
cableto usersotherthanthosewho suppliedthedatafor the
learning?

3. How canweensurethatthelearnednetworksareinter-
pretable?Especiallywhenhiddenvariablesare involved, a
learningtechniquemay comeup with a solutionthat yields
satisfactoryresultsbut which doesn’t fit with any theoretical
interpretationof thevariablesinvolved.But theoreticalinter-
pretabilityis desirablein thatit allowsusto relatethelearned
networks to large amountsof relevant existing knowledge,
suchasthatfrom psychologicalandeducationalresearch.

4. How canwe learnpartial networks and thencombine
the results? When dealingwith most realistic scenariosin
usermodeling,it will be impossibleto gatherempiricaldata
for entirenetworksat once. In particular, psychologicalex-
perimentsare typically designedto investigateonly a few
variablesat a time. Therefore,an interestingproblemis that
of learningpartial networksandputting thesepartstogether
into a singleBN. Similarly, it may happenthat previous re-
searchhasalreadyyieldedadequateinformationconcerning
onepartof a network. In thatcase,it maybepossibleto re-
strict learningto therestof thenetwork andsubsequentlyto
combinetheparts.

5. How canthelearningtechniquesbeadaptedsothatthey
work with acceptableefficiency? Sincetechniquesfor learn-

ing networks with hiddenvariablesinvolve iterative search
throughaspacewith veryhighdimensionalityandwith many
local maxima,they canraiseseriousproblemsof computa-
tional complexity that can threatentheir applicability, even
if they only needto be appliedoff-line. Someapproaches
to solving theseproblemsarenot specificto usermodeling,
but othersareconnectedwith theabove-mentionedissuesof
ensuringinterpretabilityandcombinabilityof networks.

Sincethework describedhereis still in progress,we will
not offer firm answersto all of thesequestionshere.Instead,
we will discusstheresultsachievedsofar andthe ideasthat
wearecurrentlypursuing.

1.4 ExampleDomain

Although the issueswe are addressingare not specific to
any particularapplicationdomain, for concretenesswe are
using a particular applicationscenario,that of the system
READY (see,e.g., [Jamesonet al., 1999]). In this domain,
the focusof the usermodelingis on the user’s situationally
determinedresourceconstraints—specifically, limitationsof
time andworking memory(WM). Thekey hiddenvariables
in READY’s dynamicBNs refer to theselimitations. Until
now, theentriesof theconditionalprobability tables(CPTs)
of theseBNshavebeenbasedonacombinationof (a)analysis
of relevantpreviousexperiments,(b) ourown largelyqualita-
tiveempiricalstudies,and(c) theoreticalconsiderations.Our
goal in applyingBN learningtechniquesis not simply to re-
placetheseothersourcesof knowledgebut to combinethem
with a moredirectuseof empiricaldata.

In thefull READY system,theBNsarerathercomplex dy-
namic networks that include dozensof variables. To get a
grip on the problemsof BN learningin this context, we be-
ganwith thedataof anexperimentthatfocusedononly afew
of thesevariables.

2 Summary of Experiment and Results
It only makessensefor asystem

�
to try to adaptto thework-

ing memoryloadof a user� if differentsystemactionscan
bemostappropriategivendifferentlevelsof workingmemory
load.For example,intuitively onewouldexpectthatwhen �
is suffering from high WM load,

�
’s instructionsshouldbe

designedto besimplerandeasierto execute,evenif thissim-
plicity leadsto a longerexecutiontime for theinstructions.

2.1 Method

We investigatedthis hypothesisusingthe experimentaltask
shown in Figure1. In themiddleandbottomof thescreenwe
seethebuttonsusedfor the subjects’primary task,whereas
at thetop thereis a “lamp” for thesecondarytask.

In theprimarytaskthesubjecthadto click on 2 to 4 but-
tons, accordingto (prerecorded)spoken instructionsof the
system(e.g.“SetX to 3 . . . ”). A similar situationcouldarise
in a realapplicationif

�
, for example,offeredassistancevia

a telephonehot-line. In this case,the buttonson the screen
would containmeaningfullabels;abstractlabelswereused
in the experimentto eliminateany effectsof differencesin
subjects’prior knowledge.



Figure 1. Main screenusedfor theexperimentdescribedin
Section2.

Stepwise:�
: Set X to 3.�
: ... [OK]�
: Set M to 1.�
: ... [OK]�
: Set V to 4.�
: ... [OK]

Bundled:�
: Set X to 3,

set�  M to 1,
set�  V to 4.�

: ... ... ... [OK]

Figure 2. Illustrationof the two presentationmodesfor in-
structions.

Thesecondarytaskwasperformedconcurrentlywith the
primary task: The “lamp” flashedintermittently; whenever
two successive flasheshadthesamecolor, thesubjectwasto
pressthespacebar. A comparabledistractionin arealisticsit-
uationmight involve, for example,theneedto monitorsome
processrunningon thecomputeror to communicatewith an-
otherperson.

Threeindependentvariablesweremanipulated:
1. Numberof stepsin each task: In eachtask,either2, 3,

or 4 settingshadto bemadein succession.
2. Presentationmode:As is illustratedin Figure2, in the

stepwisemode,theinstructionfor eachstepwasspokensep-
arately;thenext instructionwasgivenonly after thesubject
hadexecutedtheinstructionandclickedon the“OK” button.
In thebundledmode,theinstructionsfor all 2 to 4 stepsof a
giventaskwerespokenwithout interruption;only aftercom-
pletingthelaststepdid thesubjectclick on the“OK” button.

3. Presenceof secondarytask: The secondarytaskonly
hadto beperformedin half of theblocksof trials; in theother
half, thelampdid notchangecolor.

Two dependentvariableswill beconsideredhere:
1. Error in theprimary task: This binaryvariablehasthe

value“True” whenthesubjectpressedall of theright buttons
for agiventask.

2. Executiontime for the primary task: This is the time

betweenthemomentthesystembeganspeakingthe instruc-
tionsfor a taskandthemomentthesubjectpressedthe“OK”
buttonto signalcompletionof thetask.

2.2 Summary of Results
A traditionalanalysisof variancerevealedthefollowing sig-
nificantmaineffects:

1. A largernumberof stepspertaskleadsto longertimes
(obviously)andmoreerrors.

2. The presenceof a distractingsecondarytask likewise
increasesbothexecutiontimeanderrors.

3. The stepwisepresentationmode leadsto longer exe-
cution times(mainly becauseof the additionaloverheadin-
volvedin having to confirmthecompletionof eachstep),but
it alsoreducesthenumberof errors.A plausibleexplanation
for thelatterresultis thatthesubjectneedsto storelessinfor-
mationin workingmemoryandsorunslessrisk of forgetting
aninstruction.

More interestingthanthesemaineffectsis thesignificant
interactionbetweenpresentationmodeand secondarytask:
The increasein errorsassociatedwith bundledpresentation
is muchgreaterwhenthereis a secondarytask;that is, with-
out a secondarytask subjectsareable to managethe more
demandingbundledpresentationquitewell.

Roughlyspeaking,thepracticalimplication is thata sys-
temshouldtendto give stepwiseinstructionswhen � is per-
forming a secondarytask(to avoid an excessive numberof
errors)but shouldtendto givebundledinstructionsotherwise
(to save time). Thechoicethatshouldbemadein eachindi-
vidual casedependson therelative importanceof speedand
accuracy, amongotherfactors.

A traditionalanalysisof varianceexposesthemajorcausal
relationshipsandhelpsto assesstheir generality. But it does
notdirectlyyield amodelthatwouldallow a systemto make
decisionsor to interpretauser’sbehavior. Thesegoalscanbe
attainedwhenlearningtechniquesfor Bayesiannetworksare
appliedto thesamedata.

3 Learning a BayesianNetwork Without
Hidden Variables

In afirst, straightforwardeffort, weconstructedaBN without
hiddenvariables(seeFigure3). The independentvariables
of the experimentare representedby the nodesNUMBER OF

STEPS, PRESENTATION MODE and SECONDARY TASK. Two of the
otherthreenodesrepresentthedependentvariablesof theex-
periment. Becauseof the large interindividual variation in
executiontimes(representedby thenodeEXECUTION TIME) we
introducedavariablethatrepresentsauser’saveragetaskex-
ecutiontime(INDIV AVE EXECUTION TIME), which in turn reflects
theiroverallspeedof processing.Beforelearningtookplace,
the valuesof this variablewere computedfor eachsubject
straightforwardlyon thebasisof theraw data.Consequently,
thisvariableservedasanobservablevariablefor thepurpose
of learning,althoughit would not beobservablein anappli-
cationcontext.

Generallyspeaking,oneadvantageof arrangingfor learn-
ing to takeplacein anexperimentalcontext is thatsomevari-
ableswhich are (partially) hiddenin an applicationcontext



Figure3. Exampleinstantiationof aBayesiannetwork withouthiddenvariableslearnedon thebasisof theexperimentaldata.
(Thethreenodeswith adarker graybackgroundhavebeeninstantiated.)

canbemadeobservable. OncetheCPTshave beenlearned,
theresultingnetwork canbeusedin situationsin whichthese
variablesarenot observable.For example,while modelinga
particularuser� in anapplicationsituation,

�
will know that

� hassomeparticularINDIV AVE EXECUTION TIME, but
�

will ini-
tially have only a highly uncertainestimateof the valueof
this variable. This estimatewill beupdatedin thecourseof
theinteraction.

Note that, if this variablewere not includedin the net-
work structure,the learningalgorithmwould not be ableto
takeinto accountindividualdifferencesbetweensubjects.By
supplyingthesubject’sbase-ratespeedaspartof eachobser-
vation,we arehelpingthealgorithmto explain theobserved
variationin theexecutiontimes.Also, by explicitly modeling
individualdifferences,thelearnednetwork will bebetterable
to dealwith unknown users,whetherit knowstheir base-rate
speedin advanceor hasto learnit in thecourseof the inter-
action.

In this initial study, we used the NETICA2 built-in-
algorithmfor learningBNs. This algorithmpresupposesthat
no variablesarehidden.It computesthe(conditional)proba-
bilities on thebasisof frequenciesin thedata.

Notsurprisingly, theCPTslearnedby thisalgorithmreflect
thesamepatternsthatwereuncoveredby theanalysisof vari-
ancesummarizedabove.Theaveragenegativelog-likelihood
describingthe fit betweenthe network and the 1728 cases
processedis 4.89. Althoughthereis no compactway of dis-
playingall of the learnedCPTs,Figure3 illustrateshow the
network reproducesoneof theimportantresults:thehighfre-
quency of errorsthat is causedby a secondarytaskwhenthe
primary task is complex and the presentationmodeis bun-
dled.

2NETICA is a commercialtool from Norsys Software Corp.
(http://www.norsys.com)for working with Bayesiannetworks and
influencediagrams.

4 Learning a BayesianNetwork With Hidden
Variables

The network shown in Figure3 simply reproducesthe pat-
ternsin theempiricaldata,without reflectingany sortof the-
oretical explanation. As was suggestedabove, a plausible
theoreticalexplanationmight refer to limitations in the sub-
jects’ ability to storeinstructionsin working memorywhile
performinga secondarytask: The combinationof bundled
presentationanda secondarytasktendsto overloadworking
memory, leadingto a breakdown of performance.

A network that explicitly modeledthe hiddenvariableof
WM loadcouldhavethefollowing advantages:

1. A hiddenvariablecanmakethepostulatedrelationships
in the network more interpretableby relating themto prior
theoreticalandempiricalknowledge.

2. A hiddenvariablecan increasethe parsimony of the
networkandfacilitatetheadditionof new variables.Thereare
many otherfactorsthat influenceWM load andmany other
symptomsof WM overload. A network that includesa link
betweeneachcauseandeachsymptommaybeacceptableas
longasit is assmallastheoneshown in Figure3. But with an
increasingnumberof variables,thenumberof links wouldat
somepointexceedanacceptablelimit, frombothatheoretical
andapracticalpointof view.

3. A hiddenvariablecan serve asa point at which two
independentlylearnednetworkscanbejoined.To takeanes-
pecially simplecase,supposethat eachof two independent
learningstudieshasyielded a network that expressesrela-
tionshipsbetweenWORKING MEMORY LOAD andseveral symp-
tomsof highload(whichfigureaschildrenin thelearnednet-
work). It maythenbepossibletocombinethesetwo networks
straightforwardlyinto asinglenetwork thatincludesWORKING

MEMORY LOAD togetherwith all of the symptoms.Therefore,
hiddenvariablesappearto beanimportantpartof a solution
to theproblemof how to combineindependentlylearnedpar-
tial networks.

4. A hiddenvariablemaybedecision-relevant in its own
right. For example,it may be desirablefor

�
to avoid high



Figure 4. Exampleinstantiationof a Bayesiannetwork with a hiddenvariablelearnedwith theEM algorithmon thebasisof
thesamedataasthenetwork in Figure3.
(Thefour nodeswith adarker graybackgroundhavebeeninstantiated.)

WM loadin � simply becausehigh WM loadis subjectively
unpleasantfor � . In thatcasewe will want

�
’s decisionpro-

cedureto refer to its belief about� ’s WM load. This is not
possibleif thereis nocorrespondingvariablein thenetwork.

Toexplorethepossibilitiesof learninganetworkwith such
a hiddenvariable,we specifieda structurethat includedthe
variableWORKING MEMORY LOAD (seeFigure 4). It would be
simplestif all effectsof theindependentvariableson thede-
pendentvariablesweremediatedby WORKING MEMORY LOAD.
In reality, thereis anindependentfactorthataffectsexecution
time anderror frequency: simply thenumberof actionsthat

� hasto perform. (More actionsrequiremoretime andgive
moreopportunityto makeerrors.)Thisvariable,labeledNUM-

BER OF PRESSES in Figure4, essentiallyindexesthenumberof
buttonpresses(on themouseandthekeyboard)thattheuser
hasto make.

In thecontext of ourexperiment,NUMBER OF PRESSES is an
observablevariable,sincewe know exactly whatactionsthe
subjectwasrequiredto performandwhatactionsin factwere
performed.In someapplicationcontexts, thecorresponding
variablemight be only partly observable. For example, �
might beperforminga secondarytaskaboutwhich

�
hasno

information.Justaswith thevariableINDIV AVE EXECUTION TIME

(seeSection3), it is convenientto beableto treatNUMBER OF

PRESSES asanobservablevariablefor thepurposeof learning.

4.1 Learning With the EM Algorithm

The algorithm which is apparentlymost widely used for
learningthe CPTsof BNs with hiddenvariablesis the EM
(expectationmaximization) algorithm (see,e.g., [Mitchell,

1997]). We implementedthis algorithm3 and had it learn
a network with the structureshown in Figure 4. The net-
works learnedwith EM aresomewhat lessaccuratethanthe
learnedfully observablenetworks.(Theaveragenegativelog-
likelihood,over 1728cases,is 5.15,comparedwith 4.89for
thenetwork discussedSection3.)

4.2 Learning With the APN Algorithm
For purposesof comparison,wealsoimplementedtheAdap-
tiveProbabilisticNetworksalgorithmdevelopedby Binderet
al. [1997], which is a gradientdescentmethodfor determin-
ing a local optimumregardingthe CPT entries. The results
wereroughlysimilar to thoseobtainedwith EM. (The aver-
agenegative log-likelihood,over 1728cases,is 5.26, com-
paredwith 5.15for EM.)

4.3 ExampleUseof a Learned Network
Figure 4 illustrateshow the learnednetwork makesplausi-
bleinferenceswheninterpretingthebehavior of anindividual
user. Considerthesituationwhere

�
is giving instructionsto

� but
�

doesnot know whether � happensto be working
on somesecondarytaskat thesametime.

�
will thenwant

to judgethe likelihoodof sucha secondarytask,soasto be
ableto adaptthe form of its instructions.Relevantevidence
is availableif

�
getsfeedbackontheaccuracy andspeedwith

which � performsthemaintask. In thatcase
�

caninstanti-
atethevariablesERROR IN TASK andEXECUTION TIME. Figure4
shows

�
’sassessmentsaftertheobservationof anerrorby � .

3TheimplementedEM algorithmusesNETICA’sfacilitiesto per-
form computationson intermediatestatesof the to-be-learnednet-
work. For exampleNETICA’sinferencealgorithmis heavily usedto
computebeliefsof network nodes.



Notethat
�

’sassessmentof � ’sWM loadis highandthatthe
likelihoodthat � is performinga secondarytaskis alsoseen
asfairly high.

4.4 Summary of ExperienceWith Both Algorithms

Experiencewith theEM andAPN algorithmsshowedtheim-
portanceof exploiting prior knowledgeaboutthequantitative
causalrelationshipsamongthenetwork variables.Theinitial
CPTswith which thealgorithmstartedon its searchstrongly
influencedthefinal result,especiallywith theAPNalgorithm.
This effect is dueto thepresenceof a largenumberof local
optimain thesearchspace.We hopethattheproblemcanbe
alleviatedin partby theuseof prior knowledgeto restrictthe
searchspace:In additiontospecifyinginitial CPTsthatcorre-
spondto ourtheoreticalinterpretationof thehiddenvariables,
we canspecifyconstraintson theCPTsthat the learningal-
gorithmwill berequiredto respect.

A somewhatanalogousproblemis dealtwith by Druzdzel
andvanderGaag[1995]. In thecontext of knowledgeelici-
tationfor Bayesiannetworks,they presenta methodfor inte-
gratingvarioustypesof knowledgeabouttherelevantproba-
bilities. Onetypeof knowledgeis thequalitative opinionsof
expertsconcerningcaseswhereonevariablehasapositiveor
negative influenceonanothervariable.Druzdzelandvander
Gaagshow how suchjudgmentscanberepresentedin terms
of constraintson thecorrespondingconditionalprobabilities.
We arenow exploring thefollowing approach:

1. Constraintsfor ournetworksarerepresentedmathemat-
ically in similarway.

2. Using theAPN algorithm,we addto thenegative log-
likelihood metric for the evaluation of a network a
penaltyterm that reflectsthe extent to which the net-
work violatestheconstraints.

3. The searchalgorithmshouldthen tend to avoid solu-
tions that violate the constraints.(How hardthe con-
straintsare will dependon the relative weight of the
penaltyterm.)

Thesemeasuresto increasethe accuracy of the learned
networks shouldalso tend to increasetheir intepretability,
becausethey shouldensurethat the learningalgorithmwill
comeupwith a “theory” thatis compatiblewith our theoreti-
cal preconceptions.

5 Concluding Remarks

This paperhasdiscusseda numberof resultsandideascon-
cerningtheissuesformulatedin Section1.3. In keepingwith
thepurposeof a workshop,thediscussionraisesmoreques-
tionsthanit answers.

On thewhole,wecanseethatapplyingBN learningtech-
niquesin a usermodelingcontext is not a straightforward
technicalproblem. It requiresattentionto the characteristic
featuresof (a) dataconcerninghumanperformanceand(b)
the contexts in which usermodelingcomponentsaredevel-
opedandapplied. Doing justiceto thesefeaturesin turn re-
quiresacertainamountof technicalinnovation.
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