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5 Experiment: Method

Stepwise vs. Bundled Instructions
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Stepwise: Bundled:
S.Set Xto3 S.Set Xto3,setMto1,setVtio4
B. ... OK B .........Done
S.:SetMtol
B. ... OK
S:SetVto4
‘B. ... Done

Variables in Experiment

Independent variables Dependent variables
1. Presentation mode (selection)
® Stepwise vs. bundled 1. Total time to execute an

instruction sequence

Including "OK"s, etc.
2. Number of steps in task g

® 2,3 o0r4steps
2. Error in main task

® Buttons not pressed, or

3. Distraction by secondary task wrongly pressed

® No secondary task vs.
monitor the flashing lights
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Experiment: Results
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Learning Bayes Nets
1: Modeling Only Observable Variables @

Definition
® Structure is specified on the basis of theoretical considerations
This holds for all nets discussed here
® Only observable variables of experiment are included in network

Positive points
® | earning can be done straightforwardly with many BN tools
® | earning is very fast (e.g., < 1 sec)

Negative points
® Little theoretical interpretability
® Relatively inefficient evaluation
Too many parents per node
® Doesn'’t take into account systematic individual differences

1: Modeling Only Observable Variables 2 1
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il Bundled 0] | | | e
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Number_of Flashes
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2: Hidden Theoretical Variable @) 1
Definition
® Hidden variable "Working Memory Load" added
Basis:

— Psychological theory
— Previous experimental results
® [ earning with Russell et al.’s APN algorithm
2 Gradient descent

Positive points
® Better theoretical interpretability
£ Easier to leverage existing psychological knowledge

£ Possible to add or replace variables without relearning
everything from scratch

® Relatively efficient evaluation

2: Hidden Theoretical Variable 12

Negative points
® | earning times several orders of magnitude greater (hours or nights)

Note: Partly due to current limitations of Netica, soon to be
removed

® Some aspects of CPTs involving the hidden variable are implausible
E.g., strangely nonmonotonic relationships
® |ndividual differences are still not taken into account
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2: Hidden Theoretical Variable ©) 13

Numher_of_Ste.pS_ | Presentation_Mode Secondary_Task

Four 100 Bundled | Yeg O
Three O Stepwise 100 Mo 100
Two 0

¥ ¥
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MOPE 100 — Cognitive_Load NoFE 1_38_5
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Procedure
Add to each observation in the dataset a new observable feature:
"Overall average execution time of the user in question”
Distinction
® Variables that are naturally observable in an application setting
® Variables that can be made observable in an experimental setting
How to do this:
Exploit possibilities for measuring and controlling variables

Ensure an appropriate number of observations from each
subject and/or in each condition
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3: Modeling Individual Differences @

Positive points
® Accuracy of learned net is greater
Here: 50% (vs. 44%) accurate prediction of UI's execution time in
training set
(Not in itself surprising or significant)
® \When the individual-speed variable can be assessed (with
uncertainty) in an application situation, prediction accuracy will be
improved
Negative points
® CPTs are still sometimes implausible

3: Modeling Individual Differences ©)
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Number_of Steps Presentation_Mode | Secondary_Task

Four 0 Bundled 100 Yes Nt
Three 100 Stepwise 0 No 100
Twio ]
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13 .074| F9 0.14] Errors_in_Flash_Reactions
R e 1B 075 Pg 026 E3 Eal o H
e : 7 075 P79 E2 056
Yes 2.38 B 1.40 PE 0.37 E1 053
Mo S0B 5 067 PS5 062 = oo g
14 571 P4 207 -
35512 kAl
2 34.4 P2 B.54
[1:::35:9 P1 306
0 5.45 PO 58.2




17 Learning Bayes Nets

3: Modeling Individual Differences ©
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4: Constraining the Nature of Relationships i

Basic idea
®* Formulate theoretically motivated qualitative constraints
E.g., "More steps [0 Higher WM load"

® Ensure that only networks that (almost) satisfy these constraints can
be learned

Procedure

1. Translate qualitative formulations of constraints into quantitative
inequalities concerning conditional probabilities

See Druzdzel & van der Gaag (UAI95)
2. Define a corresponding penalty term for nets that violate a constraint

3. Factor in the penalty term when determining the next step in the
gradient descent

4. (Strategy tried up to now:)
Give the penalty term less weight as the search proceeds
Motivation: Otherwise it might take forever to find a solution

4: Constraining the Nature of Relationships @

Positive points

® The learned nets do satisfy the constraints better
Negative points

® There are still some constraint violations
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4: Constraining the Nature of Relationships @)z
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Numher_of_Ste.ps. | Presentation_Mode | Secondary_Task

Four 100 —— —
Bundled 100 Yes (1] e

Three ] g i

i 0 tepwise 0

S ‘Ff T L4 Number_of_Flashes

Nolll::ll }ﬁDI_D‘fI’_ [EPES Cognitive_Load MoF5 1.20

MoP3 001 N\ . NoF3 120 -

NP2 100 p—— e (02 NoF2 1.20

NoPT 0.01 Love o TN NoF1 1.20

MoPO  0.01 MNoFO  94.0 pe—_—

Indiv_Ave Execution_Time Indiv_Ave Pause_Time

High 145 High 833
hedium 385 Medium 573

Loy 469 Lo 34.4
Execution_Time Pause_Time
19 P9 0.18] |
L J I3 P8 031 - -
Error_in_Task I7 P7 023 Errors_in_Flash_Reactions
Yes 33.1 15 PE 0.66 E3 e
Mo BB.9 15 P5 1.05 E2
14 P4 225 E1
13 el EQ
12 P2 832
I P1 302
0 PO 552




23 Learning Bayes Nets 24

5: Choosing Learning Methods Flexibly @ 5

Basic idea

Each CPT can be seen as a learning problem with its own specific
features

So why not choose the most suitable learning technique for each
CPT (cf. Musick, KDD96)?

Example:
If you think that A and B have a linear influence on C, use linear
regression to estimate the parameters
Simple application here

1. For CPTs that involve only observable variables, use simple
methods

2. Then fix these CPTs before starting to use gradient descent
Positive points
® Saves a lot of learning time
Here: about 1/3
® Perhaps better prediction of extreme observations?

5: Choosing Learning Methods Flexibly @
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Conclusions 2

What have we done?

® First(?) example of learning an BN with a hidden variable for user
modeling

® Example of using BN learning to explain results of a psychological
experiment

® |dentification of several problems that seem especially important for
BN learning in this context

¢ Qutline of briefly tested possible solutions to these problems

What do we have to do now?
® |nvestigate possible answers more thoroughly
® |n particular perform thorough and systematic evaluations
® | ook into further issues of this sort
E.g., What is the best criterion here for evaluating a learned net?

Should it be evaluated in terms of success at the particular
tasks for which the net is to be used?

Cf. Greiner et al. (UAI97); Kontkanen et al. (UAI99)
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U'S PREFERENCES OR
BEHAVIORAL REGULARITIES

APPLICATION OF LEARNED
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Learning About Users in General 27
MODEL EMBODYING
KNOWLEDGE OF USERS IN
GENERAL
LEARNING ABOUT USERS IN
GENERAL GENERALLY RELEVANT
PROPERTIES OF U
P4

’
~
s ~
USAGE DATA FROM A S o
REPRESENTATIVE SAMPLE ~ A
OF USERS —

INTERPRETATION OF U'S
DATA WITH GENERAL
MODEL

P 4

’

PREDICTIONS FOR U ON
BASIS OF GENERAL MODEL

DECISION-RELEVANT
PROPERTIES OF U

USAGE DATA FROM A

SINGLE USER U

Which Approach to Use? 28

When to learn for users in general?
® Useful generalizations can be made about all users

® These generalizations are not obvious but must be learned from
data

® Only limited data is available about any given user

When to learn for each individual user?
® There are few nontrivial generalizations

® |ndividual users differ not only in details but in their overall structure,
strategies, etc.

® A reasonably large about of data is available for each user
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