Introduction

Learning Bayesian Networks With Hidden Variables for User Modeling

Barbara Großmann-Hutter, Anthony Jameson, and Frank Wittig Department of Computer Science, University of Saarbrücken, Germany http://w5.cs.uni-sb.de/~ready/ (Slides, etc.)

Overview

- 1. Example domain and experiment
- Modeling the results by learning Bayes nets
 Proposal 1 and issues
 Proposal 2 and issues

. . .

- 1. Conclusions
- 2. (Optional:) *Why* learn about users–in–general?

Table of Contents

Introduction	1
Table of Contents	2
Experiment: Method	3 5 6
Experiment: Results Main Results	7 7
Learning Bayes Nets 1: Modeling Only Observable Variables 2: Hidden Theoretical Variable 3: Modeling Individual Differences 4: Constraining the Nature of Relationships 5: Choosing Learning Methods Flexibly	9 9 11 14 19 23
Conclusions	25 25
Why Learn About Users-in-General? Learning About Individual Users Learning About Users in General Which Approach to Use?	26 26 27 28

Experiment: Method Experimental Setup ⁽¹⁾ v В I J М I I ĸ х

Experimental Setup ⁽²⁾

v В I I J М I х ĸ I

Stepwise vs. Bundled Instructions

Stepwise: S: Set X to 3 B: ... OK S: Set M to 1 B: ... OK

S: Set *V* to *4 B*: ... Done

Bundled:

S: Set X to 3, set M to 1, set V to 4 B: ... Done

Variables in Experiment

Independent variables

- 1. Presentation mode
 - Stepwise vs. bundled
- 2. Number of steps in task
 - 2, 3 or 4 steps
- 3. Distraction by secondary task
 - No secondary task vs. monitor the flashing lights

Dependent variables (selection)

- 1. Total time to execute an instruction sequence Including "OK"s, etc.
- 2. Error in main task
 - Buttons not pressed, or wrongly pressed

5

5

Main Results ⁽²⁾

Learning Bayes Nets 1: Modeling Only Observable Variables ⁽¹⁾ 9

Definition

9

- Structure is specified on the basis of theoretical considerations This holds for all nets discussed here
- Only observable variables of experiment are included in network

Positive points

- Learning can be done straightforwardly with many BN tools
- Learning is very fast (e.g., < 1 sec)

Negative points

- Little theoretical interpretability
- Relatively inefficient evaluation Too many parents per node
- Doesn't take into account systematic individual differences

1: Modeling Only Observable Variables ⁽²⁾ 10

11

2: Hidden Theoretical Variable⁽¹⁾

Definition

- Hidden variable "Working Memory Load" added Basis:
 - Psychological theory
 - Previous experimental results
- Learning with Russell et al.'s APN algorithm
 - ⇒ Gradient descent

Positive points

- Better theoretical interpretability
 - ⇒ Easier to leverage existing psychological knowledge
 - ⇒ Possible to add or replace variables without relearning everything from scratch
- Relatively efficient evaluation

2: Hidden Theoretical Variable ⁽²⁾

12

Negative points

- Learning times several orders of magnitude greater (hours or nights) Note: Partly due to current limitations of Netica, soon to be removed
- Some aspects of CPTs involving the hidden variable are implausible E.g., strangely nonmonotonic relationships
- Individual differences are still not taken into account

3: Modeling Individual Differences (1)

14

Procedure

Add to each observation in the dataset a new observable feature: "Overall average execution time of the user in guestion"

Distinction

- Variables that are naturally observable in an application setting
- Variables that can be made observable in an experimental setting How to do this:

Exploit possibilities for measuring and controlling variables Ensure an appropriate number of observations from each subject and/or in each condition

15

3: Modeling Individual Differences ⁽²⁾

Positive points

Accuracy of learned net is greater

Here: 50% (vs. 44%) accurate prediction of $\ensuremath{\mathcal{U}}\xspace's$ execution time in training set

(Not in itself surprising or significant)

 When the individual-speed variable can be assessed (with uncertainty) in an application situation, prediction accuracy will be improved

Negative points

• CPTs are still sometimes implausible

3: Modeling Individual Differences ⁽⁵⁾

4: Constraining the Nature of Relationships ⁽¹⁾₁₉

Basic idea

- Formulate theoretically motivated qualitative constraints E.g., "More steps ⇒ Higher WM load"
- Ensure that only networks that (almost) satisfy these constraints can be learned

Procedure

- Translate qualitative formulations of constraints into quantitative inequalities concerning conditional probabilities See Druzdzel & van der Gaag (UAI95)
- 2. Define a corresponding penalty term for nets that violate a constraint
- 3. Factor in the penalty term when determining the next step in the gradient descent
- 4. (Strategy tried up to now:)

Give the penalty term less weight as the search proceeds Motivation: Otherwise it might take forever to find a solution

4: Constraining the Nature of Relationships ⁽²⁾₂₀

Positive points

• The learned nets do satisfy the constraints better

Negative points

• There are still some constraint violations

4: Constraining the Nature of Relationships ⁽³⁾₂₁

4: Constraining the Nature of Relationships ⁽⁴⁾₂₂

5: Choosing Learning Methods Flexibly ⁽¹⁾ 23

Basic idea

Each CPT can be seen as a learning problem with its own specific features

So why not choose the most suitable learning technique for each CPT (cf. Musick, KDD96)?

Example:

If you think that *A* and *B* have a linear influence on *C*, use linear regression to estimate the parameters

Simple application here

- 1. For CPTs that involve only observable variables, use simple methods
- 2. Then fix these CPTs before starting to use gradient descent

Positive points

- Saves a lot of learning time Here: about 1/3
- Perhaps better prediction of extreme observations?

5: Choosing Learning Methods Flexibly ⁽²⁾ 24

Conclusions

What have we done?

- First(?) example of learning an BN with a hidden variable for user modeling
- Example of using BN learning to explain results of a psychological experiment
- Identification of several problems that seem especially important for BN learning in this context
- Outline of briefly tested possible solutions to these problems

What do we have to do now?

- Investigate possible answers more thoroughly
- In particular perform thorough and systematic evaluations
- Look into further issues of this sort

E.g., What is the best criterion here for evaluating a learned net? Should it be evaluated in terms of success at the particular tasks for which the net is to be used?

Cf. Greiner et al. (UAI97); Kontkanen et al. (UAI99)

Why Learn About Users-in-General? Learning About Individual Users

26

Which Approach to Use?

28

When to learn for users in general?

- Useful generalizations can be made about all users
- These generalizations are not obvious but must be learned from data
- Only limited data is available about any given user

When to learn for each individual user?

- There are few nontrivial generalizations
- Individual users differ not only in details but in their overall structure, strategies, etc.
- A reasonably large about of data is available for each user