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Abstract

Evaluation-oriented information provision is a
function performed by many systems that serve
as personal assistants, advisors, or sales assistants.
Five general tasks are distinguished which need to
be addressed by such systems. For each task, tech-
niques employed in a sample of systems are dis-
cussed, and it isshown how thelessonslearned from
these systems can be taken into account with a set of
unified techniquesthat make use of well-understood
concepts and principles from Multi-Attribute Utili-
ty Theory and Bayesian networks. Thesetechniques
areillustrated asrealized inthe dial og system PRAC-
MA.

During the past two decades, anumber of Al systems have
been developed whose overal task can be characterized as
evaluation-oriented information provision: The user (to be
called the evaluator, or £) has the goal of making evalu-
ative judgments about one or more objects; the system (or
information-provider, Z) supplies £ with information to help
& make these judgments. Table 1 lists arepresentative sample
of five such systems, which will bereferred toasEOQIPs.! The
number of such systems seems likely to grow in the near fu-
ture, especially given the recent interest in personal assistants
—some of which advise their users on evaluative judgments
—and teleshopping, which should increase the demand for
automated sal es assistants.

EOIP systems differ considerably in the techniques they
employ for interaction with the user and for internal process-
ing. For example, the communication with the INFORMATION
FILTERING SySTEM and the SALES ASSISTANT isrealized with
direct manipulation and hypertext techniques, whereas the
other three systems use some form of natural language. There
are also large differences in the theoretical frameworks and
terminology in which EOIPs are presented. These differences
impede exchange and consolidation of results. The present pa-
per aims (a) to remedy this state of affairs by providing a uni-

*This research is being supported by the German Science Foun-
dation (DFG) inits Specia Collaborative Research Program on Arti-
ficial Intelligence and Knowledge-Based Systems (SFB 314), project
N1, PRACMA.

INot included are expert systems that perform evaluation tasks
using evaluation criteria that have no necessary relationship to the
criteria of the user (see, e.g., [Klein and Shortliffe, 1994]).

Table 1: Overview of Five Representative Systems for
Evaluation-Oriented Information Provision

Example Example
System Reference Evaluator Objects
GRUNDY [Rich, 1979 Library user Library
books
INFORMATION  [Sheth and Reader of Individual
FILTERING Maes, 1993] network news news
SYSTEM® articles
ConsuLT® [Elzeretal.,  University University
1994] student courses
SALES [Popp and Potential buyer Products
ASSISTANT Lodel, 1994] (eg.of personal  offered for
computer) sae
PRACMA [Jameson et Potential used- Available
al., 1994] car buyer cars

“No system name was given in the cited paper.
®This name was introduced after the appearance of the cited paper.

fied framework for analyzing the techniques used in EOIPs;
and (b) to advance the state of the art by presenting some
new techniques which should be generally applicable within
EOIPs.

Table 2 givesan overview of five general taskswhich are at
|east potentially relevant to any EOIP. Thesewill be discussed
in turnin the five sections to follow. The new techniques will
be presented inthe context of thefifth of thereferencesystems,
PrRACMA. The excerpt from an example dialog in Table 3 both
gives asense of the nature of PRACMA’s dialogs and provides
initial examples of the five tasks.

1 Task 1: Predict Overall Evaluations

It is almost inevitable for an EQIP to try to predict how the
user £ would evaluate individual objects in the domain if he?
had complete information about them. For example, though
it is clear in the used-car domain that the buying decision
will ultimately be made by &, 7 needs to predict £’s overall
evaluations in order to narrow the discussion to one or more

2For clarity, masculine and neuter pronouns will be used to refer
to £ and Z, respectively.



Table 2: Overview of Five General Tasks for an Evaluation-
Oriented Information Provider

Table 3; Part of an Example Dialog with PRACMA lllustrating
Five Tasks of Evaluation-Oriented Information Provision

1. Predict Overall Evaluations: Anticipate how £ would evaluate
one or more domain objects, perhaps relative to one another,
given complete knowledge about them.

2. Predict Partial Evaluations: Anticipatetheimpact thatinforma-
tion about an attribute of an object would have on £’s evaluation
of that object.

3. Interpret Evidence: Update the model of £’sevaluation criteria
on the basis of evidencein £’s actions.

4. Elicit Evidence: Induce £ to perform actionsthat will constitute
evidence for the task “Interpret Evidence”.

5. Select Dialog Moves: Determine what type of dialog move to
make (e.g., formulate recommendation; ask question about £’s
criterig; allow £ to act next).

objects.

Almost all EOIPs appear to be based on some particular
conceptualization of how £ would evaluate an object given
complete information about it.3 In most cases the concep-
tualization can be seen as a variant of a conceptualization
known by the name Multi-Attribute Utility Theory (MAUT)
and similar names (see, e.g., [von Winterfeldt and Edwards,
1986]).

1.1 TheMAUT Conceptualization

Some basic concepts of this conceptualization are illustrated
in Figure 1, which shows part of a value tree that a used-car
customer consulting PRACMA might use to evaluate a particu-
lar car. Each leaf correspondsto an attribute, which for each
particular object has alevel within agiven range. For each at-
tribute, £ has a value function which assigns to each possible
level avalue between 0 and 10 (for example, for the attribute
“Mileage”, the values might be 10, 3, and O for the levels“0
—10,000", “40,000-50,000", and “80,000—90,000", respec-
tively). To take into account differences in the importance of
attributes, each branch in the value tree has an importance
weight between 0.0 and 1.0. For example, the importance
weightsonthebranches|eading downto“Mileage” and“ Time
to Inspection” specify their relativeweightswith respect tothe
value dimension of “Reliability”; the weights on the branch-
esleading down to “Reliability” and “ Safety” in turn specify
the relative weights of these dimensions with respect to the
overall evaluation of the car. The absolute importance weight
of each individual attribute (shown below the corresponding
leaf in Figure 1) isthe product of the weights on the branches
leading to it. If £ had complete information about an object,
£ could arrive at an overall evaluation by determining the ob-
ject’s value with respect to each attribute, multiplying each
such value by its absolute importance weight, and adding up

3strictly speaking, Z need not presuppose that £ really evaluates
objects in accordance with the conceptualization used, only that it
is useful for Z to act as if £ did so. Given the constructive, task-
dependent, and situation-dependent nature of human evaluation pro-
cesses (see, e.g., [Payne et al., 1992]), for descriptive purposes any
single conceptualization is best viewed as arough approximation.

Dialog contribution Task(s) performed by Z¢

Z:. What kind of car areyoulook- 4. Elicit evidence

ing for?

&: Itshouldn’t cost more than 3. Interpret evidence
about 10,000.
It shouldn’t be too old.

Z: What kind of work doyoudo? 4. Elicit evidence

£: | am ateacher. 3. Interpret evidence

Z: | have something you might 1. Predict overall evaluations
like.
It'sa Rabbit. 2. Predict partia evaluations

Its year of construction is 1990.

&: How long isthetimeto the 3. Interpret evidence
next official inspection?
Z. Thetimetothe nextinspection 2. Predict partial evaluations
is2 years.
£: <Noreaction> 3. Interpret evidence
Z: ltsmileageis 40,000. 2. Predict partial evaluations
£: That'sgood. 3. Interpret evidence

“Task 5, “Select dialog moves’, is performed each time Z produces
an utterance or gives £ achanceto do so.

the weighted values.*

Variantsof MAUT Used in EOIPs

Thisbasic conceptualization takes different formsin different
EOIP systems and sometimes remains implicit.

> The SALES ASSISTANT treats the value function for an
attribute as a fuzzy membership function representing a
concept like “Has at least 32Mb RAM”, and the weight
of an attribute is represented by a membership func-
tion corresponding to anatural languageformulation like
“quite important”.

> CONSULT may, for example, ascribe to £ a “negative
preference” for courses beginning after 6 p.m., in effect
ascribing a particular value function mapping times of
day onto values; the characterization of this negative
preference as“ strong” in effect assignsto this attribute a
high importance weight.

> The INFORMATION FILTERING Sy STEM, which uses tech-
niques from Artificial Life, provides an evolving pop-
ulation of agents. Each agent in effect ascribesto £ a
simplevaluetree that it uses to evaluate and recommend
news articles. Each attribute corresponds to the presence
or absence of a particular keyword (or other feature) in
the article being evaluated, and each attribute has at any

4A single attribute can affect the evaluation of an object with re-
spect to more than one value dimension (e.g., “Horsepower” hasim-
plications for both “ Sportiness’ and “Environmental Friendliness”).
Although casesinvolving theseand additional complicationsare han-
died by PRACMA (cf. [Schafer, 1994]), a discussion of their proper
treatment would exceed the scope of this paper.
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Figure 1: Part of avaluetreethat might beused by an Eval uator
in PRACMA’s example domain.

time an importance weight, which can change as the
agent adaptsto £.

Throughout this paper, terminology from the MAUT lit-
erature will be used instead of the terminology used in the
original publications on the reference systems.

1.2 Handling Uncertainty About the Evaluator’s
Criteria

Even assuming that £’s eval uation processes can be described
perfectly in terms of avalue tree, an EOIP can rarely have a
complete and accurate view of £’s evaluation criteria. For ex-
ample, with respect to thevaluetreein Figure 1, £s can differ
widely in the importance weights they attach to value dimen-
sions like “Reliability”, and independently of this they may
attach idiosyncratic relative weights to individual attributes
like “Mileage”.

Treatment in Other EOIPs

Some systems, such as the INFORMATION FILTERING SYSTEM
and the SALES ASSISTANT, in effect make use of their best
specific estimate as to the content of £’s value tree. They
therefore do not distinguish between predictions in which
they are confident and those which represent mere guesses.
This distinction may in fact be of minor importance if the
EOIP evaluates alarge number of objectson £’s behalf and if
the consequences of an incorrect prediction are not serious.
Other EOIPs represent uncertainty about £’s eval uation cri-
teriaexplicitly.
> When ascribing to £ a particular value function, CoN-
SULT associates with this ascription (@) a confidence rat-
ing and (b) a list of endorsements for the ascription.
When predicting how £ would evaluate various courses,
the system takesinto account only attributes about whose
value functionsit has at least moderate confidence.

Notethat if an EOIPrestrictsits attention to attributes about
whichitisconfident, it still cannot be confident that itsoverall
predictions are accurate. For example, an object that rates
highly with respect to oneattributemay be extremely attractive
to £ eventhough 7 asyet has no evidence that £ assigns high
importance to that attribute. It is therefore desirable for Z
to be able to derive some sort of confidence interval for its
predictions of £'s overall evaluations.
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Figure 2: Part of a Bayesian network constructed by PRACMA

to predict and interpret eval uative reactions to a statement.

(Arrows point from parent to child nodes. The darker histograms
represent the beliefs the system derives through upward propagation
on the basis of £’s positive reaction to the statement “Its mileageis
40,000 —cf. section 3.)

RELATIVE IMPORTANCE OF
RELIABILITY FOR E

Managing Uncertainty with Bayesian Networks

This problem (and others to be discussed below) can be han-
dled effectively with the help of Bayesian networks.® This
approach will be discussed in most detail in connection with
PrAaCMA’s handling of Task 2, “Predict partial evaluations’;
but some of the basic concepts can be illustrated in terms of
the three network nodes depicted in the upper |eft-hand part of
Figure 2. These nodes show how 7’s uncertainty concerning
theimportanceweightsrelevant to the attribute“Mileage”’ can
be handled. (Until section 3 we will refer only to the first of
the two histograms shown for each node.)

In the node RELATIVE IMPORTANCE OF RELIABILITY FOR E, the
first histogram depicts a probability distribution represent-
ing Z's initial belief about a variable X, namely the relative
weight that the current £ attaches to “Réliability”. Where-
asin Figure 1 X simply had the value .30, here Z's belief
about X isaprobability distribution over the possible values
that X can assume. For reasons of computational tractability,
X is approximated as a discrete variable with five possible

SFor theoretical and technical background on Bayesian networks
see, e.g., [Pearl, 1988], whose notation and concepts are adopted in
the present paper, or [Neapolitan, 1990].



values, corresponding to the midpoints of the intervals .00—
.10, .10-.20, .20-.30, .30-.40, and .40—.50. Z’s probability
distribution for X can therefore be viewed as a five-element
vector BEL(x).® In the example, Z considers it most prob-
able that £’s weight is around .15 but that the weight might
also be as high as about .35. The node RELATIVE IMPORTANCE OF
MILEAGE FOR RELIABILITY FOR CUSTOMERS IN GENERAL represents
Z’s belief about the average weight of the mileage attribute,
relative to the value dimension of reliability, in the population
of customersthat Z deals with.

On the basis of its beliefs about these two variables, 7
can form a belief about the IMPORTANCE OF MILEAGE FOR E, aS
indicated by the arrows showing that this third nodeisachild
of the former two parent nodes. But the relationship between
the parent nodes and the child node is probabilistic: Evenif 7
knew the exact values of the two variablesin the parent nodes,
it could not be sure that the value of the variable in the child
node was simply their product, because the relative weight
that this particular £ attachesto “Mileage” may deviate from
the relative weight for customersin general.

In a Bayesian network, a probabilistic relation between
two parent nodes corresponding to variables X and Y and a
child node corresponding to a variable Z is represented by a
matrix of conditional probabilities P(z|z,y) which contains
one probability for each possible combination of values of
Z, X, and Y. For these particular three nodes, the matrix is
generated using afunction which specifiesthat the probability
of Z taking agiven value zishighest when that valueiscloseto
the product of thevalues z and y of the two parent variables.”

7 arrives at a belief concerning the child variable through
the standard top-down propagation procedure for singly con-
nected Bayesian networks.® In thisexample, we seethat 7 has
a moderate amount of uncertainty about the weight that in-
formation about a car's mileage will have in determining £'s
evaluation of it; the probability distribution for iMPORTANCE
OF MILEAGE FOR E would be still narrower, for example, if 7
somehow had acquired a definite belief about the ReLATIVE
IMPORTANCE OF RELIABILITY FOR E.

This type of uncertainty ultimately affects Z's prediction
of £’s overal evaluation of a given car. This prediction task
involves many nodes not depicted in Figure 2, but its treat-
ment is largely analogous to that of the prediction of partial
evaluations, which is discussed in the following section.

®For each possible value z of X,

BEL(z) 2 P(X = z|e),

where erepresents all of the evidence received so far.
"The basic function is given by

P(z|z,y) = F(z — zy + .05) — F(z — 2y — .05),

where F' is the cumulative distribution function for a normal distri-
bution with mean 0 and standard deviation 0.10.

8See, e.g., [Pearl, 1988, chap. 4]. In the present relatively simple
case, where there isinitially no other evidence concerning the child
variable, the resulting belief vector is related to those for the parent
nodes as follows:

BEL(z) = ) _ P(2|z,y)BEL(z)BEL(y).

T,y

2 Task 2: Predict Partial Evaluations

In addition to predicting the evaluation of entire objects, an
EOQIP should be able to anticipate the impact that information
about a particular attribute of an object will haveon £’s eval-
uation of that object. First, even if Z is already certain that a
given object should be recommended to £, Z may haveto ex-
plainits recommendation.® Second, Z may in some cases not
attempt to evaluate entire objectsfor £ at all, pursuing instead
themoremodest goal of efficiently supplying information that
allows € to arrive at evaluations of his own.

2.1 Treatment in Other EOIPs

Some EOIPs supplement their recommendation of an object
with a description of those attributes of the object that the
system expects to have the greatest impact on £’s evaluation.

> In particular, CONSULT illustrates that this sort of selec-
tion of attributes must sometimes concern relative eval-
uations. When recommending an alternative to a uni-
versity course selected by the user, the system describes
only those attributes with respect to which the alternative
courseislikely to be evaluated substantially higher by £
than the original choice.

This capability for selective description of objects is not
required only in natural language systemswith anarrow com-
muni cation bandwidth. For example, systems like the INFOR-
MATION FILTERING SYSTEM often present an overview of a
fairly large set of objects, each of which has to be character-
ized briefly. So it may be worthwhile, for example, for Z to
select an especially evaluation-relevant subset of each object’s
attributes to be displayed in graphical or tabular form.

2.2 Predicting Partial Evaluationswith Bayesian
Networks

The way in which Bayesian networks can be applied to this
task will beillustrated for a particular type of relative partial
evaluation: An evaluation shift isthe changein £’sevaluation
of an object with respect to a given attribute after £ has re-
ceived information about the object’ slevel with respect to that
attribute (cf. [Jameson, 1989]). An evaluation shift is actual-
ly more relevant than an absolute evaluation for determining
which facts 7 should mention. For example, even if 7 knows
that £ assigns a high weight to the attribute “Mileage”, there
islittle point in mentioning that a given car has low mileage
if £ has already been told that it isonly afew weeksold: The
statement could in this case hardly produce a substantial shift
in&’s evauation.

A straightforward way of using Bayesian networks to pre-
dict an eval uation shift would be to make separate predictions
of &'s evaluations of an object before and after 7's state-
ment with respect to an attribute (e.g., that Car 5's mileage
is40,000). Each of these predictions would make use of 7's
prediction of iMPORTANCE oF MILEAGE FOR E (cf. Figure 2 and
the discussion in the previous section); a comparison of the
nodes representing the two resulting predictions would give
some indication of £’s likely evaluation shift. This method

9Klein and Shortliffe [1994] present sophisticated techniques for
explaining evaluative decisions which have been arrived at using a
particul ar, known val ue tree—which may have been acquired either
from the user or from an independent expert.



would be invalid, however: Z's uncertainty about £’s impor-
tanceweightswould enter into both of the predictions, leading
to much more uncertainty in the prediction of the evaluation
shift than would be necessary or justified.

The remaining part of Figure 2 (except for the bottom-
most node, which will be discussed in the next two sections)
showshow thisproblem can be avoided. PRACMA dynamically
constructs a partial network like this whenever it considers
making a statement about a particular attribute of a car—in
this case, the statement “Its mileage is 40,000”. The node e's
PRIOR EXPECTATION ABOUT CAR 5'S MILEAGE represents Z's belief
about what £ would consider the most likely mileage for
Car 5 before £ obtained any information from Z; as the first
histogram for the node illustrates, Z can initially have only
arather indefinite belief about this expectation. On the basis
of this variable, Z can try to predict the extent to which £’s
unweighted evaluation of Car 5's mileage (on a scale from O
to 10) will shift upward or downward after 7's statement. Z's
belief about this shift is shown in the first histogram for e's
UNWEIGHTED EVALUATION SHIFT FOR CAR 5'S MILEAGE: Z considers
it slightly more probable that the shift will be positive than
that it will be negative (because 40,000 is a bit more likely
to bel%Iower mileage than £ expects than it is to be a higher
one).

The node E's EVALUATION SHIFT FOR CAR 5'S MILEAGE 1S Of most
relevancefor Z in deciding what to say, asit reflectstheimpact
that 7's statement is likely to have on £’s overall evaluation
of Car 5, which of course depends in part on IMPORTANCE OF
MILEAGE FOR E. The prediction of this variable on the basis of
its two parent variables proceedsin away similar to that de-
scribed insection 1 for the prediction of IMPORTANCE OF MILEAGE
For E itself (in both cases the basic underlying relationship is
multiplicative). The first histogram for e's EVALUATION SHIFT
FOR CAR 5's MILEAGE shows that Z considersit unlikely that its
statement will influence £’s overall evaluation (which will be
on ascale from 0 to 10) by more than about .1 in either direc-
tion. Thisexample illustrates that it is often possible to make
afairly definite prediction about achangein avariableevenif
one hasonly indefinite beliefs about theinitial and later levels
of the variable—if the uncertainty that is common to the two
beliefsis handled appropriately.

3 Task 3: Interpret Evidence

Most EOIPs refine their models of £ on the basis of evidence
supplied by £ during theinteraction. Thewaysinwhich & can
give useful cluesinclude: explicitly characterizing hisevalua-
tioncriteria(“I’minterested in politics”), making requestsfor
particular types of information (“What books/coursed/articles
do you have that involve palitics?’), expressing evaluative
judgments he has arrived at (“This object [which involves
politics] looks good™), and reporting personal characteristics
that have implications for his evaluation criteria (“I'm alaw
student”).

3.1 Treatment in Other EOIPs

The most common approach to processing this type of evi-
dence is to adjust one or more parameters of Z's model of £

The matrix of conditional probabilities linking these two nodes
presupposes that £’s value function for “Mileage” is similar to the
onethat Z assumesfor customersin general, but it takesinto account
possible idiosyncratic variation.

(e.g., Z'srepresentation of the importance of politicsfor £) in
the direction suggested by the evidence, with the magnitude
of the adjustment depending on the nature of the evidence.

> When an article suggested by one of the INFORMATION
FILTERING SYSTEM’S agents is evaluated positively by
the user, the importance weight associated with each of
the article’'s keywordsis increased.

> Whenever GRUNDY processes a self-description or an
evaluative reaction to a library book from the user, the
system adjusts a number of quantitative assessments it
has made—for example, concerning the specific £'sin-
terest or concerning the long-term content of the general
stereotypesthat the system has associated with the user.

In these systems, the direction and relative magnitudes of
the adjustmentsin Z’smodel of £ can bejustified fairly plau-
sibly, but there is a good deal of arbitrariness in the details.
This limitation may be of minor importance if Z will have
the opportunity to process a large amount of evidence con-
cerning a given aspect of its model; in such cases the model
can ultimately converge on realistic values even if the indi-
vidual adjustments are not optimal. Where evidence is much
more limited—for example, when it concerns a specific £
and isacquired during asingleinteraction—itisdesirablefor
adjustmentsto Z's model to be justifiable more specificaly.

3.2 Probabilistic Evidence I nter pretation

Thisgoal can be achieved within the Bayesian network frame-
work used by PRACMA, if the relevant aspects of £'s behavior
are represented by nodes which have precisely defined proba-
bilistic linksto the nodesthat represent unobservabl e states of
£. Although the conditional probabilities defining these links
may be based on intuitively plausible assumptions made by
the designer rather than on empirical data, at least the details
of the system’s inferences can be understood and justified in
terms of these assumptions.

Thisway of handling evidence in £’s actions isillustrated
by the way PRACMA interprets an explicit evaluative reaction
like “That's good” following a statement that it has made
(cf. Table 3). The type of reaction (including possibly “<no
reaction>") that £ produces is represented by a node in the
Bayesian network—E’'s VERBAL REACTION TO CAR 5'S MILEAGE iN
Figure 2. This node distinguishes several categories of eval-
uative verbal reactions that were observed in an unpublished
empirical study. The matrix of conditional probabilities link-
ing this node with its parent E'S EVALUATION SHIFT FOR CAR 5'S
MILEAGE Was derived indirectly from the data of this study.

Before Z observes £’s reaction, Z has only an indefinite
belief as to what E's VERBAL REACTION TO CAR 5's MILEAGE Will
be, asshowninthefirst histogram for the node. But after £ has
responded with “ That'sgood”, Z has acompl etely definite be-
lief, shown in the second histogram. Now aprocess of upward
propagation can begin, in which the beliefs associated with
the ancestor nodes of E's VERBAL REACTION TO CAR 5'S MILEAGE



areupdated in the light of the new evidence.!* Thesecond his-
togram for each ancestor node shows the updated beliefs. Z's
belief about E's EVALUATION SHIFT FOR CAR 5'S MILEAGE IS Most
directly affected: It is now almost certain that £’s evaluation
shift was in fact positive. Less directly, Z confirmsthat £ ex-
pected Car 5 apriori to have a higher mileage than 40,000 (e's
PRIOR EXPECTATION ABOUT CAR 5'S MILEAGE), and Z also increases
the extent to which it believes that £ assigns high importance
to“Reliability” in general andto“Mileage” in particular. Note
also the dlight positive shift in RELATIVE IMPORTANCE OF MILEAGE
FOR RELIABILITY FOR CUSTOMERS IN GENERAL, Which shows that
7 isgradualy learning, on the basis of £’s actions, about the
evaluation criteriaof customersin general.

An entirely analogous approach is used in PRACMA to in-
terpret the fact that £ has asked a question about a specific
attribute. When, on the other hand, evidence becomes avail-
able that is directly related to £'s evaluation criteria or to a
relevant personal characteristic (cf. the examplesin Table 3),
less complex processing is required. For example, when &
says “1'm especially interested in reliability”, a correspond-
ing nodeis attached directly asachild under the node rReLATIVE
IMPORTANCE OF RELIABILITY FOR E. The conditional probabilities
linking the child node to the parent node reflect the fact that
the likelihood of £'s making a statement like this is a posi-
tive function of the actual importance of reliability for £ but
that the utterance does not uniquely determine any particular
degree of importance.

4 Task 4: Elicit Evidence

Given 7's need for evidence from £ in order to update its
model of £, one natural task for Z is to take steps so as to
increasethe likelihood that useful evidence of particular types
will become available. For example, in the car sales domain,
professional salespersonsemphasizethat they actively acquire
amodel of the customer by asking questions about personal
characteristics and evaluation criteria and by encouraging the
customer to express eval uative responses ([Simons, 1994]).

4.1 Treatment in Other EOIPs

EOIPs that exploit the broad band-width of modern human-
computer interfacescan makeit easy for £ to enter information
about himself optionally and with a minimum of distraction
from his primary task.

> The INFORMATION FILTERING SYSTEM allows &, after
reading an article, to express his evaluation by clicking
on a thumbs-up or thumbs-down icon displayed above
the article; and to expressinterest in particular attributes
by highlighting words in the text of the article.

In cases where techniques such as these are not applicable
and/or where the consequences of 7's use of an inaccurate

1Upward propagation essentially uses Bayes Rule to adjust the
probability associated with each possible value of a variable in an
ancestor node in accordance with the conditional probability of the
observed evidence given that value. Although the computations are
in general more complex, in the simple case of the two nodes at the
bottom of Figure 2, the updated belief vector BEL' (x) for the parent
variable X after the observation Y = 3’ isrelated to the prior belief
vector BEL(z) asfollows:

model can be serious, some more obtrusive dlicitation of in-
formation from £ may prove inevitable. One issue that then
arisesishow 7 can selectively elicit the information that will
beof the greatest value. In EOI Psto date, thiskind of selection
decision has typically been made by the designer, not by the
system itself on-line.

> GRUNDY aways asks a new user to supply some self-
descriptivewords, and when it hasdescribed apotentially
interesting book, it asks £ “Does that sound good?’.
It is only when £ has given a negative response to a
question like this that GRUNDY asks questions chosen
for their expected information value: It asks about £'s
evaluation of individual attributes of the book, starting
with attributes for which Z is most uncertain about £’s
evaluation.

4.2 Systematic Assessment of Information Value

If Z's model of £'s evaluation processes is cast in the form
of a Bayesian network, general techniques for predicting the
value of new information within this framework (cf. [Pearl,
1988, 6.3—6.4]) can be applied. A well-known approach with-
in decision theory involves comparing the expected value of
an outcome if a decision is made on the basis of some new
information with the expected valueiif it is made without that
information. For example, how much moreis aused-car buy-
er'spurchaselikely to beworth if he performs particular tests
on a candidate car before making his choice (see, e.g., [Qi et
al., 1994])? In the context of eval uation-oriented information
provision, this approach would require quantitative evalua-
tion of the ultimate consequences of a decision made by the
informant Z to elicit (or not to elicit) a given piece of infor-
mation from £. But such consequences are in general hard to
anticipate and to quantify. For example, Z'sfailureto elicit a
relevant fact about £ might ultimately lead to a less satisfac-
tory decision by &, or it might just cause alengthening of the
interaction between £ and Z.

In such cases a useful criterion is often the extent to which
new information will reduce the system’s uncertainty about
particular target variableswhose valuesimportantly influence
the system’s behavior.*? In an EOIP that uses Bayesian net-
works in the way PRACMA does, interesting target variables
include the importance weights that £ assigns to the various
value dimensions.

For example, suppose that in the example dialog (Table 3)
£ did not spontaneously express any evaluative reaction to
T's statement about Car 5's mileage. Then Z would have had
to decide whether to elicit such a reaction (e.g., by asking
“What do you think of that?’). One of the main benefits of
doing so would be the kind of reduction in Z's uncertainty
about the node RELATIVE IMPORTANCE OF RELIABILITY FOR E that

2The cost C(X) of Z's uncertainty about a quantitative variable

X can be defined in terms of the variance of the probability distribu-
tion representing Z's belief about X, i.e.

C(X) =) BEL(x)(z — pa)’,
where p, isthe mean of the distribution for X, i.e.

P = Z BEL(z)z.



isillustrated by the change from the first to the second his-
togram for that node in Figure 2. Since 7 doesn't know in
advance what type of reaction £ will express, 7 must in ef-
fect perform the updating shown in Figure 2 for each possible
reaction type, weighting the resulting uncertainty reductions
by the prior probabilities of the reaction types™® (these are
shownin thefirst histogram for £'s VERBAL REACTION TO CAR 5'S
MILEAGE). Generally speaking, eliciting evaluative reactionsis
especially worthwhile when a fact has contrary implications
for two different relevant dimensions (e.g., high horsepower
is positive for “ Sportiness’ and negative for “Environmental
Friendliness’); in such cases, a single reaction by £ often
yields considerable information about the importance he as-
signsto the two value dimensions.

7 can use the same genera technique when deciding
whether to elicit other types of reaction by &, such as state-
ments about personal characteristics and evaluation criteria
(cf. the remarks at the end of section 3 on how such state-
ments are interpreted by PRACMA).

5 Task 5: Select Dialog M oves

Thefivereference systemsdiscussed haveillustrated anumber
of types of dialog movethat Z can make, for example: asking
about £'s personal characteristics, answering questions, and
volunteering unsolicited information. Though some criteria
have been discussed in the preceding sections for choosing
a move of a particular type (e.g., deciding which object to
recommend), the more general question remains of how 7
should decide which type of move to make at which time; and
when to give £ the chance to make a move.

5.1 Treatment in Other EOIPs

A survey of other EOIPs suggests three genera principles
with respect to this question:

1. 7 shouldtry to achieve an efficient and coherent sequence
of dialog moves.

> The default ordering of the screensin the SALES AssIs-
TANT follows a sequence that is presumably efficient in
most cases. obtaining information about various aspects
of £ and then making use of it to recommend products.

2. The criteriafor selecting dialog moves should take into
account eval uation-relevant information.

> CONSULT's decision as to whether to suggest a different
university course than the one chosen by £ depends not
only on the dialog state but also on whether 7 has found
a course which seems clearly superior.

This dependence of dialog moves on dynamically applied
evaluation-relevant criteriamakes sensein that thewhol e point
of the interaction isto support £’s evaluation process.

3. Both £ and Z should be able to influence the course of
the interaction.

> The user of the SALES ASSISTANT has the option of ig-
noring the default screen sequence and navigating freely
through the system.

Not only do users appreciate this sort of freedom, it also

supportsthe goal of efficiency: Although Z knowsmore about
thedomain objectsthan £ does, £ in general knowsmore about

BEtficient techniques for performing the relevant computations
are discussed in [Pearl, 1988, 6.4.2].

his own evaluation criteria. Because of this distribution of
relevant knowledge over the two parti cipants, each participant
may at any point be in a better position to determine the
direction the dialog should take.

5.2 Dialog Control Through Flexible Planning

PrRACMA models the process of participating in a dialog in
terms of the generation and execution of dialog plans. It uses
a planner ([Weis, 1994]) which implements a basically hi-
erarchical planning approach (cf. [Moore and Paris, 1989])
extended by special plan operators for modeling iterations on
subgoals.

1. Efficiency and coherence. On the highest level, PRAC-
MA’shierarchy of plan operatorsdividesthe dialoginto phases
corresponding tothosefoundinsalesdialogs(e.g., thephasein
whichZ actively triesto acquireinformation about £ precedes
the phase for presenting information about relevant objects).
On alower level in the hierarchy, for each dialog phase there
are severa optional strategies that specify sequences which
are efficient and correspond to dialog conventions (e.g., for
the active acquisition phase, the strategies include “Ask about
personal characteristics’ and “Ask about requirements”).

2. Evaluation-dependence. The applicability conditionsof
the plan operators refer not only to the nature of the preceding
dialog movesbut also to aspectsof themodel of £'sevaluation
process. In other words, the considerations mentioned in the
previous sections that determine which particular move of a
given type PRACMA makes—e.g., what kind of evaluation
shift a given statement would produce in £ —are also used
to determine which type of move the system makes at a given
moment. This eval uation-dependent determination of what to
do next often requires iteration: repeatedly achieving a given
subgoal until it no longer appears worthwhile to do so.

3. Mixed initiative. After each of 7'sdialog moves, 7 gives
£ achance to make the next move, even when 7 has already
planned an appropriate next move of its own.** To enable
PRACMA to accommodate a variety of dialog moves by &,
including those which don’t fit well into Z's plan, the dialog
strategies include lower-level tactics, whose selection is in-
fluenced by £’s actions. For example, the strategy “Ask about
personal characteristics’ includes atactic which is applicable
when £ (unexpectedly) asksaspecific question: Z answersthe
question minimally and, after executing thistactic, continues
to pursue the same strategy.

6 Conclusions

Table 4 summarizes the advances achieved by the tech-
niques discussed in this paper relative to the overall state of
the art in eval uation-oriented information provision.

A more general conclusion isthat research in this areacan
benefit from increased use of relevant theoretical frameworks
and techniquesthat are not specific to thistopic. This strategy
is analogous, for example, to the strategy underlying recent
work that applies numerical uncertainty management tech-
niquesto the problem of plan recognition (see, e.g., [Charniak
and Goldman, 1993; Bauer, 1995]). This type of research has

Simulated facial expressions are currently being integrated
through which Z will be able to signal, among other things, the
extent to which it considersit desirablefor £ to make the next move.



Table 4: Benefits of the Described Techniquesfor Systemsfor
Evaluation-Oriented Information Provision

Tasks1and 2: Predict Overall and Partial Evaluations

= Predictionintermsof aprobability distribution, yielding differ-
entiated information to support Z's dialog decisions.

= Simultaneous management of uncertainty with respect to a
broad range of variables, from importance weights for £sin
general to the prior expectation of aparticular £ concerning an
attribute of aparticular object.

= Appropriatetreatment of uncertainty in the prediction of evalu-
ation shifts and other relative evaluations.

Task 3: Interpret Evidence

= Principled adjustment of Z's beliefs concerning a variety of
possible causes of £’s observed behavior.
= Explicit representation of the probabilistic relationships be-
tween the observable behavior of £ and unobservable variables.
Task 4: Elicit Evidence

= Dynamic selection of information-eliciting moves on the basis
of context-dependent estimation of the value of the resulting
information.

Task 5: Select Dialog M oves

= Integration of dialog planning with quantitative user modeling,
permitting flexible support of £’s evaluation processes.

shown that there is often a good fit between the tasks recur-
rently performed by a particular type of system and existing
more general techniques; but that it is nonethel essa challeng-
ing research goal towork out an appropriate conceptualization
of atask interms of these techniques.
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