

Contents

Introduction	5
Preview	5
Examples of Multitasking	6
Some Relevant Fields	7
Exam System and Task Analysis	
The Semens S35i Mobile Phone	
Instructions for Voice Dialing	
Eye-Based Dialing	10
Questions	11
Ear-Based Dialing	12
Questions	13
Conversing	14
Eye-Based Dialing and Conversing	15
Possible Resource Conflicts	16
Questions	17
Walking	19
Ear-Based Dialing and Walking	20
	21 22
Ear_Based Dialing Walking and Conversing	22
Eve-Based Dialing, Walking, and Conversing	20
Largely Premature Guidelines	25
Make Desirable Multitasking Possible	25
Avoid Obstacles to Multitasking	26
Support Learning of Multitasking Strategies	28
Observing Multitasking	29
CHCC Data Collection Infrastructure	29
Mobile Eye Tracking	30
Roles for Adaptivity	32
Potential Benefits of System Adaptation	32
What Can S Recognize Automatically?	33
Usability Goals for User-Adaptive Systems	34
Summarv	36
Summary	36

Introduction

5

More than just driver distraction

Theoretical analysis

• Problems with a well-designed example system

Empirical Methods

• Demo of mobile eye tracker

Adaptivity

 How can a system automatically recognize resource constraints?

Example System and Task Analysis The Siemens S35i Mobile Phone

9 Instructions for Voice Dialing

From the manual:

In standby:

To select, press the lower key on the left side of the phone

or use the soft key (setting, see page 17)

Then say the name. The phone number will be dialed automatically.

Eye-Based Dialing 10 PRESS Thumb BUTTON MOVE MOVE PHONE PHONE TO EAR Hand BEFORE EYES LOOK LOOK LOOK FOR FOR FOR Eyes PHONE FLASHING SPEAK Voice NAME LISTEN Left Ear FOR ANSWER

Right Ear

Questions

- How can \mathcal{U} learn that the first two actions can be performed in parallel?
 - Frequent practice?
 - Explicit thought?
- How can *U* learn what to look for?
- How can *U* learn that fully eye-based dialing is possible?
 - Assuming that everything proceeds smoothly?
 - Considering that unusual events may occur?

Questions

- How can \mathcal{U} learn what the sounds mean?
 - First beep?
 - Repetition of name
 - Dial tones
- How can *U* learn that ear-based dialing is possible?

Possible Resource Conflicts

s ources ention	Type of Conflict	Dialing	Conversing
isted here i cessing res ieties of atte	Same input channel	Looking at display	Looking at friend
ike those li 1984). Proc Eds.), <i>Vari</i>	Same input encoding	Name on display	Utterance of friend
zing resource codills II y - cf. Wickens, dill (1 uraman & D. R. Davies (1 -L: Academic Press.	Excessive working memory load	Recalling form of stored name Checking displayed name for correctness	Listening or speaking to friend
ework for analy Resource Theor n. In R. Parasu 02). Orlando, F	Same output encoding	First utterance of person answering phone	Own utterance or utterance of friend
One fram Multiple F in attentio (pp. 63–1	Same output channel	Speaking of name	Speaking to friend

15

Questions ⁽¹⁾

- Will $\ensuremath{\mathcal{U}}$ be aware of potential resource conflicts on the basis of
 - past experience with each of the specific conflicts?
 - theoretical analysis?
- Can *U* deal with each resource conflict when she encounters it
 - or will the damage already have been done?

Questions ⁽²⁾

18

- If *U* is aware of a potential conflict in advance, how can she avoid it?
 - by postponing, interrupting, or aborting some action?
 - by choosing another multitasking strategy?
- Can *U* anticipate in advance how well she will be able to deal with any resource conflicts that may arise?

Questions

- Is it possible for *U* to anticipate resource conflicts that may arise through changes in the course of the dialog
 - if U considers the change too unlikely to be worth thinking about?
 - if $\operatorname{\mathcal{U}}$ does not know what happens after such a change?

23 Ear-Based Dialing, Walking, and Conversing

Eye–Based Dialing, Walking, and Conversing 24

Largely Premature Guidelines Make Desirable Multitasking Possible

- Consider likely combinations of system-related and environment-related tasks
- If possible, ensure that S supports these • combinations
 - · Even when exceptional events occur
- Otherwise, provide convincing prohibitions (how?)
 - "Never use this device while Xing, because ..."

Avoid Obstacles to Multitasking ⁽¹⁾

26

ort of spectives aum.	Obstacle	Why a problem	
II gical issues in suppo Stem design: New peri 84). Hillsdale, NJ: Erlba	User actions whose duration and/or cognitive resource demands cannot easily be assessed by \mathcal{U}	<i>U</i> 's decisions must be based on assessments of resource demands	
Jorman, D. (1986). Psyc <mark>l</mark> In (Ed.), <i>User centered <mark>S</mark> iter interaction</i> (pp. 265–2	User actions that have to be performed with a limited time window	$\mathcal U$ may want to postpone the action in order to cope with a concurrent task	
Cf. Miyata, Y., & N multiple activities. on human-compu	User subtasks that cannot be suspended (for later resumption) or aborted	<i>U</i> may need to leave a subtask in order to return to another task	

25

	27 Avoid Obstacles to Multitasking ⁽²⁾		
sruption nsen, N. Intelligent	Obstacle	Why a problem	
(2001). Notification, di tions on memory and Tokyo. acts.htm See also Ber paraction in the car. Interactivity and ona, Italy.	Tasks where there is no reminder of the current state of progress	When \mathcal{U} returns to such a task, she may not remember where she was	
Cf. Cutrell, E., Czerwinski, M., & Horvitz, E. and memory: Effects of messaging interrup performance. <i>Proceedings of Interact 2001</i> http://research.microsoft.com/~horvitz/Abst 0., & Dybkjær, L. (2001). Exploring nature <i>Proceedings of the CLASS Workshop on Interactive Information Representation</i> , Ver http://www.nis.sdu.dk/~nob/	 Stimuli that tend to attract more attention than they deserve They are redundant, but U does not recognize this fact They are perceptually salient 	U may neglect more important stimuli in another modality and/or another task	

Support Learning of Multitasking Strategies 28

- Provide minimal but adequate instruction
 - "To use this device while walking, keep it held to your ear"
 - "If you hear a beep, start over"
- Apply general learnability principles
 - Concerning predictability, transparency, familiarity, consistency
- Provide limited system modes that are suitable for combination with particular environment-related tasks
 - "walking mode", "meeting mode", ...

An approach similar to the third strategy listed can be found in: Pieraccini, R., Carpenter, B., Woudenberg, E., Casker G., Springer, S., Bloom, J., & Phillips, M. (2002). Multi-modal spoken di Hin with wireless devices. *Proceedings of the ISCA Tutorial and Research Workshop on Multi-Modal Dialogue in Mobile Environments*, Kloster Irsee, Germany.

Observing Multitasking CHCC Data Collection Infrastructure

Mobile Eye Tracking ⁽¹⁾

29

Adapted from Figure 2 of Oviatt, S. (2000) [[1] timodal system processing in mobile environments. *Proceedings of the 13th Annual ACM Symposium on User Interface Software and Technology*, pp. 21–30.

Roles for Adaptivity Potential Benefits of System Adaptation

- 32
- What can S know that U doesn't know?
 - How \mathcal{S} works, in all situations
 - Typical resource demands of system-related and environment-related tasks
 - Effective control strategies for multitasking
- How can S adapt?
 - · Recognize *U*'s concurrent tasks (or resource limitations)
 - Offer suitable modalities for U's input
 - Produce its output in a suitable modality
 - Adapt other aspects of its behavior
 - E.g., shift to a more conservative dialog style

March, L., Rummer, R., ptions have consequences: ht user interfaces. See, e.g., Jameson, A., Großmann-Hutter HII March, L., Rummer, R., Bohnenberger, T., & Wittig, F. (2001). Whi high prions have consequence Empirically based decision making for intelligent user interfaces. *Knowledge-Based Systems, 14, 75–*92. http://w5.cs.uni-sb.de/~ready/

33	What Can	\mathcal{S} Recognize	Automatically?
----	----------	-------------------------	----------------

er, R., & n the basis , & J. <i>ghth</i>	Resource demand	Example evidence	Example source of evidence
lameson, A., Rumme hd cognitive load o P. Gmytrasiewicz roceedings of the Ei	Settings or tasks with typical resource demands	Participating in meeting	Use by <i>U</i> of setting–specific software
nn-Hutter, B. time presskill udy. In M. Bill eer Modeling: P in: Springer.	Demands on perceptual channels	Auditory stimuli	Microphone
Müller, C., Großmar 2001). Recognizing An experimental st (Eds.), <i>UM2001, Us</i> <i>ial Conference</i> . Berl	Processing of material with a particular type of encoding	Speech apparently directed at \mathcal{U}	Microphone, camera
See, e.g., Wittig, F. (of speech: Vassileva Internatior	Working memory demands	Symptoms in <i>U</i> 's speech	Speech recognizer

Usability Goals for User-Adaptive Systems (1) 34

Predictability

- Users often need to predict what ${\mathcal S}$ will do
 - especially in connection with frequently performed and/or automatic actions of $\ensuremath{\mathcal{U}}$

Transparency

- Users want to understand to some degree
 - why $\ensuremath{\mathcal{S}}$ has made a particular adaptation or recommendation
 - how \mathcal{S} 's adaptive mechanisms work

35Usability Goals for User-Adaptive Systems ⁽²⁾

Controllability

- Users want some degree of control over
 - the individual adaptations that \mathcal{S} makes
 - the general parameters that determine $\mathcal{S}\space{-}\s$

Unobtrusiveness

- $\mathcal{S}\xspace$ s adaptations should not lead to constant distraction
 - even in the service of the above three goals

Summary Summary

- Designing for multitasking raises special issues when
 - users have little experience with the tasks and/or the task combinations
 - the tasks are inherently partly unpredictable
- Multimodality tends to increase the number of possible strategies for successful multitasking
 - but it does not guarantee that users will discover and effectively use these strategies
- Automatic adaptation can take some of the burden off of the user
 - but careful attention to key usability issues is required