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1 Introduction

As its title suggests, this chapter covers a broad range of in-
teractive systems. But they all have one idea in common:
that it can be worthwhile for a system to learn something
about each individual user and adapt its behavior to them in
some nontrivial way.
The perception and discussion of systems based on this idea
has tended to be dominated by extreme examples, both real
and hypothetical. So we should start with a look at a relevant
system that is more typical of current trends (Figure 15.1).
SWIFTFILE (Segal and Kephart, 2000) is designed to expe-
dite the tedious task of filing incoming email messages into
folders. By observing and analyzing the way an individual
user files messages, the system learns to predict the three
most likely folders for any new message. It enhances the
usual email interface with three buttons that name the most
likely folders. If the user notices that one of these guesses
is correct, she can click on the corresponding button, saving
herself the mental and physical effort of selecting the correct
folder via the usual methods. If all of the guesses are wrong
(a relatively rare event; cf. 7.2)—or if the user simply does
not wish to pay any attention to the buttons—she can file the
message in the usual way.

Concepts The key idea embodied in SWIFTFILE and the
other systems discussed in this chapter is that of adaptation
to the individual user. Depending on their function and form,
systems that adapt to their users have been given labels rang-
ing from adaptive interfaces through user modeling systems
to software agents or intelligent agents. Starting in the late
1990s, the broader term personalization became popular, es-
pecially in connection with commercially deployed systems.
In order to be able to discuss the common issues that all of
these systems raise, we will refer to them as user-adaptive
systems (“UASs”). And to simplify exposition, we will use
the symbol “

�
” to refer to an interactive computing system

or device and “� ” to refer to its user. Figure 15.2 introduces
some concepts that can be applied to any UAS; Figure 15.3
shows the form that they take in SWIFTFILE.
A UAS makes use of some type of information about the
current individual user � , such as the choices � has made

Note: After some changes introduced by copy-editing, this chapter appeared
as Chapter 15 of: J. A. Jacko, & A. Sears (Eds.) (2003). Human-computer
interaction handbook (pp. 305–330). Mahwah, NJ: Erlbaum.
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Figure 15.2. General schema for the processing in a user-
adaptive system.
(Ovals: input or output; rectangles: processing methods; cylinder: stored
information. Dotted arrows: use of information; solid arrows: production
of results.)
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Figure 15.3. Application of the schema of Figure 15.2 to the
example of SWIFTFILE.

when filing messages into folders. In the process of user
model acquisition,

�
performs some type of learning and/or

inference on the basis of the information about � in order to
arrive at some sort of user model, which in general concerns
only limited aspects of � (such as her mail-filing habits).
In the process of user model application,

�
applies the user

model to the relevant features of the current situation in order
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Figure 15.1. Screen shot from SWIFTFILE, showing its three shortcut buttons for the filing of the current email message.
(Part of Figure 1 of “Incremental learning in SwiftFile,” by R. B. Segal and J. O. Kephart, 2000, in P. Langley (Ed.), Machine Learning: Proceedings of the
2000 International Conference, San Francisco: Morgan Kaufmann. Copyright 2000 by the authors . Adapted with permission.)

to determine how to adapt its behavior to � .
A user-adaptive system can be defined as:

An interactive system that adapts its behavior to individual
users on the basis of processes of user model acquisition
and application that involve some form of learning, infer-
ence, or decision making.

This definition distinguishes UASs from adaptable systems:
ones which the individual user can explicitly tailor to her
own preferences (for example, by choosing options that de-
termine the appearance of the user interface). The relation-
ship between adaptivity and adaptability will be discussed in
2.2 and 3.2.

Chapter Preview Sections 2 and 3 of this chapter address
the question “What can user-adaptivity be good for?” They
examine in turn nine different functions that can be served
by user-adaptivity, giving examples ranging from familiar
commercially deployed systems to research prototypes. Sec-
tion 4 discusses some usability challenges that are especially
important in connection with UASs, challenges which have
stimulated most of the controversy that has surrounded these
systems. The next two sections consider two key design de-
cisions: What types of information about each user should
be collected (Section 5), and what techniques should be used
for the processes of learning, inference, and decision making
that are involved in user model acquisition and application
(Section 6)? Section 7 looks at several approaches to the em-
pirical study of UASs, and the concluding section comments
on the reasons why their importance is likely to continue to
grow.

2 Functions: Supporting System Use

Some of the ways in which user-adaptivity can be helpful
involve support for a user’s efforts to operate a system suc-
cessfully and effectively. This section considers four types
of support.

2.1 Taking Over Parts of Routine Tasks

The first function of adaptation was illustrated by SWIFT-
FILE: Systems in this category take over some of the work
that � would normally have to perform herself—routine

Figure 15.4. Example of adaptation in SMART MENUS.
(� accesses the “Insert” menu. Not finding the desired option, � clicks on
the extension arrows and selects the “Field” option. When � later accesses
the same menu, “Field” now appears in the main section.)

tasks that may place heavy demands on a user’s time, though
typically not on her intelligence or knowledge. Typical
tasks of this sort include email management (see, e.g., Maes,
1994) and appointment scheduling (see, e.g., Mitchell, Caru-
ana, Freitag, McDermott, & Zabowski, 1994).
The primary benefits of this form of adaptation are savings
of time and effort for � . The potential benefits are great-
est where

�
can perform the entire task without input from

� . In most cases, however, � is kept in the loop (as with
SWIFTFILE), because

�
’s ability to predict what � would

want done is limited (cf. Section 4).

2.2 Adapting the Interface

A different way of helping a person to use a system more
effectively is to adapt the user interface so that it fits better
with � ’s way of working with the system. Interface elements
that have been adapted in this way include menus, icons, and
the system’s processing of signals from input devices such
as keyboards.
A recent example is provided by the SMART MENUS feature
that Microsoft introduced in Windows 2000. Figure 15.4 il-
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Figure 15.5. Overview of adaptation in SMART MENUS.

lustrates the basic mechanism (cf. Figures 15.5): An infre-
quently used menu option is initially hidden from view; it
appears in the main part of a menu only after � has selected
it for the first time. (It will be removed later if � does not
select it often enough.) The idea is that in the long run the
menus should contain just the items that � accesses regu-
larly, so that � needs to spend less time searching within
menus.
Although no published evaluation of SMART MENUS is
available at the time of this writing, some relevant earlier re-
search had been conducted prior to the appearance of SMART
MENUS. For example, Sears and Shneiderman (1994) exam-
ined split menus, a different way of separating a menu into
high- and low-frequency regions, with the several most fre-
quently used options appearing at the top of the menu. In
a field study and an experiment, split menus yielded gener-
ally positive results in terms of selection times and subjec-
tive preferences. These results confirm the potential benefits
of this type of organization; but since the menus in these
studies remained constant for each user, the results do not
reflect the problems that can arise when menus change dur-
ing use. Frequent changes in the arrangement of menu items
can produce a strong variant of the general usability problem
of predictability. As will be discussed in 4.1, this usability
problem is especially acute for very frequently used inter-
face elements, sometimes to the point of making virtually
any form of adaptation undesirable.
One important goal of interface adaptation is to take into ac-
count special perceptual or physical impairments of individ-
ual users so as to allow them to use a system more efficiently,
with minimal errors and frustration (cf. the chapters by Jacko
et al., by Sears, and by Stephanidis in this handbook). Trewin
and Pain (1998) have developed a method for recommend-
ing adjustments to the parameters of a computer keyboard
to compensate for several types of physical disability. For
example, some users often inadvertently press the same key
twice in succession. Trewin and Pain’s system includes a
mechanism for (a) recognizing this tendency on the basis of

� ’s normal typing behavior and (b) computing an optimal
“bounce key” interval, during which a given key cannot be
reactivated. � is given the option of having the computed
interval applied to her keyboard.
Many user interfaces, though not adaptive, are adaptable (cf.
the discussion of this distinction in the chapter by Stephani-
dis in this handbook): They offer � the opportunity to spec-
ify desired properties of the user interface explicitly—for ex-
ample, the aspects of the processing of keyboard input that
Trewin and Pain (1998) address. Although adaptability is
often an attractive alternative to adaptation, the keyboard ex-
ample illustrates several typical limitations: � may not know
what options exist or how she can set them. She may have no
idea what the best setting is for her (e.g., the length of the op-
timal bounce-key interval), and trial and error with different
settings can be time-consuming and frustrating.
One strong point of adaptability is that it leaves the user in
control—a major usability consideration (Section 4). But as
Trewin and Pain’s recommender illustrates, it is often fea-
sible to leave the final decision to � even when

�
assumes

much of the burden of working out appropriate adaptations
(see also Trewin, 2000).

2.3 Giving Advice About System Use

Instead of suggesting (or executing) changes to the interface
of a given application, a system can adaptively offer infor-
mation and advice about how to use that application. As is
discussed in the chapter by Mehlenbacher in this handbook,
there exist various tendencies that make it increasingly diffi-
cult for users to attain the desired degree of mastery of the ap-
plications that they use. A good deal of research into the de-
velopment of systems that can take the role of a knowledge-
able helper was conducted in the 1980s, especially in con-
nection with the complex operating system UNIX.1 During
the 1990s, such work became less frequent, perhaps partly
because of a recognition of the fundamental difficulties in-
volved. In particular, it is often difficult to recognize a user’s
goal when � is not performing actions that tend to lead to-
ward that goal (cf. the results reported in 7.1).
The best-known adaptive help system is probably Mi-
crosoft’s OFFICE ASSISTANT, which originally appeared in
OFFICE 97. Part of the technology for the OFFICE ASSIS-
TANT was derived from the LUMIÈRE prototype, which had
been developed at Microsoft Research (see Horvitz, Breese,
Heckerman, Hovel, & Rommelse, 1998). In Figure 15.6,
LUMIÈRE is proposing help topics on the basis of � ’s recent
actions—a source of information that can be especially valu-
able when � requires some advice but does not know which
concepts she could use to find it in either the system itself
or a nonadaptive help system. The type of spontaneous in-
tervention shown in Figure 15.6 can also help � to expand
her knowledge of the system’s functionality, even when she

1A collection of papers from this period recently appeared in a volume
edited by Hegner, McKevitt, Norvig, and Wilensky (2001).
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Figure 15.7. Overview of adaptation in LUMIÈRE.

is able to perform her tasks with the functions that she is al-
ready familiar with.
When adaptive help is given spontaneously, and not just on
demand, it can endanger the usability goals of unobtrusive-
ness and controllability (see 4). Figure 15.6 illustrates one
way in which the original LUMIÈRE prototype dealt with this
problem, using decision-theoretic methods (6.3): The assis-
tance window in Figure 15.6 appears only if the “Likelihood
that help is needed” by � exceeds a given threshold. The
window is initially small, and it includes a “volume control”
with which � can raise or lower the threshold for

�
’s future

interventions. If � does not hover over the assistance win-
dow or interact with it, the window spontaneously vanishes
after displaying a brief apology in its title bar.
In the deployed OFFICE ASSISTANT, the decision-theoretic
methods for deciding when to offer help or were replaced
with a relatively simple rule-based system which, for ex-
ample, did not take into account � ’s level of competence
or her willingness to be interrupted. The resulting tendency
of the OFFICE ASSISTANT to pop up in “distracting” ways
(see, e.g., Schaumburg, 2001) has created a rather distorted
impression of the potential value of adaptive help systems.
More recent research has continued to explore ways in which
UASs can take into account users’ cognitive resource lim-
itations with decision-theoretic methods (see, e.g., Horvitz,
1999; Horvitz, Jacobs, & Hovel, 1999; Jameson et al., 2001;
Wolfman, Lau, Domingos, & Weld, 2001).

2.4 Controlling a Dialog

Much of the early research on UASs concerned systems that
conducted natural language dialogs with their users (see,
e.g., Kobsa & Wahlster, 1989). During the 1990s, attention
shifted to interaction modalities that were more widely avail-
able and that made it possible in many cases to implement
adaptation straightforwardly. Advances in the technology of
natural language and speech processing (cf. the chapters by
Karat et al. and by Lai & Yankelovich in this handbook)
have led to a recent reawakening of interest in user-adaptive
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Figure 15.9. Overview of adaptation in TOOT.

dialog systems (see, e.g., Haller, McRoy, & Kobsa, 1999;
Zukerman & Litman, 2001).
Natural language dialog has served as an interaction modal-
ity in connection with most of the functions of user-
adaptivity discussed in this and the following sections, such
as the provision of help and the recommendation of prod-
ucts. But there is also a type of adaptivity which is largely
characteristic of natural language dialog: adaptation of the
system’s dialog strategy: a policy for determining when and
how

�
should provide information, acquire information from

� , and perform other dialog acts.
An informative example is TOOT (Litman & Pan, 2000), a
prototype spoken dialog system for retrieving online train
schedules. The basic idea underlying the adaptation is that
different dialog strategies are appropriate in different situ-
ations. For example, if a given � ’s speech is understood
poorly by

�
,

�
may need to adopt a conservative dialog strat-

egy, acquiring just one piece of information at a time and fre-
quently requesting confirmation. If, on the other hand, � ’s
speech is understood well by

�
, more efficient dialog strate-

gies can be used. Figure 15.8 shows two excerpts from an
example dialog in which

�
starts with an ambitious, poten-

tially efficient strategy and then, noticing that the dialog is
not progressing well, shifts downward twice until it finally
achieves success with a very conservative strategy.
In a controlled empirical evaluation of TOOT’s adaptation
(discussed below in 7.3), it was shown that TOOT adapted to
different extents in different dialogs and that this adaptation
led to a much higher rate of successful dialog completion
(65% vs. 23%) than the use of a single dialog strategy (the
first one shown in Figure 15.8). User-adaptivity also led to
a slight increase in subjective satisfaction. Some issues that
arise in the design and interpretation of controlled studies of
this type will be discussed in 7.3.

3 Functions: Supporting Information Acquisition

We are constantly hearing that information overload is a typ-
ical problem of our age, especially because of the explosive



Figure 15.6. Example of assistance offered by the LUMIÈRE prototype.
(� has just searched through several menus, selected the entire spreadsheet, and paused. Figure 9 of “The Lumière project: Bayesian user modeling for
inferring the goals and needs of software users,” by E. Horvitz, J. Breese, D. Heckerman, D. Hovel, and K. Rommelse, 1998, in G. F. Cooper & S. Moral
(Eds.), Uncertainty in Artificial Intelligence: Proceedings of the Fourteenth Conference, pp. 256–265, San Francisco: Morgan Kaufmann. Copyright 1998 by
the authors . Adapted with permission.)

Beginning with ambitious dialog strategy: 
S: Hi, this is AT&T Amtrak Schedule System. This is TOOT. How may I help you? 
U: I need to find a train going to New York City. 

(Interpretation by speech recognizer: "DC I don’t care on Thursday".) 
S: Which city do you want to leave from? 
U: Baltimore. 
S: Do you want me to find the trains from Baltimore to DC on Thursday at anytime now? 
U: No 
S: ... 

After two switches to more conservative dialogue strategies: 
S: Which city do you want to go to? 
U: New York City. 
S: Do you want to go to New York City? 
U: Yes. 
S: Which city do you want to leave from? 
U: ... 

Figure 15.8. Excerpts from a dialog with TOOT.
(Dialog excerpted and reformatted from Figure 2 of “Predicting and adapting to poor speech recognition in a spoken dialogue system,” by D. J. Litman and
S. Pan, 2000, in Proceedings of the Seventeenth National Conference on Artificial Intelligence, Austin, TX, pp. 722–728. Copyright 2000 by the American
Association for Artificial Intelligence. Adapted with permission.)
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Figure 15.10. Sequence of three screens presented by the
ADAPTIVE NEWS SERVER.
(Adapted from a slide supplied by Michael J. Pazzani. Copyright 2000 by
Michael J. Pazzani. Adapted with permission.)
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Figure 15.11. Overview of adaptation in ADAPTIVE NEWS
SERVER.

growth of the internet and in particular the world-wide web.
In addition to the vast number of electronic documents of
various sorts, users now have access to a vast number of
products available for sale, people that they can get in touch
with, and systems that can teach them about some topic. The
second major type of function of UASs is to help people to
find what they need in a form that they can deal with.

3.1 Helping Users to Find Information

We will first look at the broad class of systems that help � to
find relevant electronic documents, which may range from
brief news stories to complex multimedia objects. A rel-
atively novel example of such a system is the ADAPTIVE
NEWS SERVER (Figure 15.10): This system delivers news
stories to small, portable computing devices such as mobile
phones and personal digital assistants. Screen A shows an
overview of available news stories; the first two are about
American football games, while the third is about a horse
race. After � has selected and read the horse racing story
(Screen B),

�
generates an adapted overview screen (C): The

first two stories now concern horse racing, a sport that
�

has
inferred � to be interested in.

The systems in this category2 typically draw from the vast
repertoire of techniques for analyzing textual information
(and to a lesser extent, information presented in other me-
dia) that have been developed in the field of information re-
trieval. The forms of adaptive support are in part different in
three different situations:

Support for Browsing � may actively search for desired
information by examining information items and pursuing
cross-references among them, as in hypermedia systems
such as the world-wide web or in the ADAPTIVE NEWS
SERVER. A UAS can help focus � ’s browsing activity by
recommending or selecting promising items or directions
of search, on the basis of what

�
has been able to infer

about � ’s information needs. Instead of selecting some
documents at the expense of others, as in the ADAPTIVE
NEWS SERVER, systems with more communication band-
width typically highlight recommended hyperlinks and/or
provide separate lists of recommendations. (Both of these
methods are used, for example, in the WEBWATCHER sys-
tem of Joachims, Freitag, & Mitchell, 1997.)
Support for Query-Based Search or Filtering Many systems
provide some sort of query mechanism, such as a search
engine or a keyword-based filtering mechanism. But ex-
plicit queries often only roughly reflect � ’s actual informa-
tion need. A user model constructed on the basis of other
sources of information can help to improve the selection of
the documents presented to � and/or the appropriateness of
the way in which they are presented (e.g., their sorting in
terms of relevance). In one straightforward approach, which
is used in the ADAPTIVE NEWS SERVER,

�
first processes

a query in a nonadaptive way and then consults its model of
� ’s interests when deciding about the further filtering and/or
presentation of the results.
SpontaneousProvision of Information A number of systems
present information that may be useful to � even while � is
simply working on some task, making no effort to find in-
formation. For example, WATSON (Budzik, Hammond, &
Birnbaum, 2001) monitors the text that a user is typing into
a word processor and presents links to relevant documents
in a web browser. (Other systems in this category are de-
scribed by Maglio, Barrett, Campbell, & Selker, 2000, and
by Rhodes, 2000.) The usability challenge of maintaining
unobtrusiveness (see 4.3 below) is especially important here,
since � is not actively searching for information (see Maglio
& Campbell, 2000, for an experimental study of how best to
achieve this goal).

3.2 Tailoring Information Presentation

Even in cases where it is clear which document a system
should present to � , the best specific way of presenting it
may vary from one user to the next. Figure 15.12 shows
part of a screen from the tourist information system AVANTI

2Surveys of parts of this large area are provided by, among oth-
ers, Brusilovsky (1996, 2001), Hanani, Shapira, and Shoval (2001), and
Mladenic (1999).



Figure 15.12. Part of a screen from the AVANTI tourist in-
formation system.
(Part of Figure 4 of “Adaptable and adaptive information provision for all
users, including disabled and elderly people,” by J. Fink, A. Kobsa, and A.
Nill, 1998, New Review of Hypermedia and Multimedia, 4, pp. 163–188.
Copyright 1998 by Taylor Graham Publishers. Adapted with permission.)

that describes a particular hotel in Siena, Italy (Fink, Kobsa,
& Nill, 1998).

�
’s current model of � states that � is in-

terested in information for wheelchair-bound or dystrophic
visitors; accordingly, information about the accessibility of
several parts of the hotel is included. For other users, this
information would be omitted on the grounds that it would
only clutter the display. This type of variation in presentation
can be realized to some extent through explicit adaptation by

� . Indeed, in the example � is given the opportunity to “Per-
sonalize the table below” by specifying which attributes are
to be shown. But the limitations of pure adaptability that
were discussed in connection with interface adaptation (2.2)
require this approach to be combined with some spontaneous
system adaptivity (cf. also the chapter by Stephanidis in this
handbook). In the example in Figure 15.12,

�
has actually

inferred from � ’s previous actions that � may no longer be
interested in information for users with mobility limitations;�

therefore gives � the option of allowing
�

to perform fur-
ther adaptations to eliminate such information.
Evaluations of AVANTI confirmed that (a) mobility-impaired
users appreciated the additional accessibility information
that

�
made available and (b) user-controlled adaptation was

taken advantage of mainly by experienced users of the sys-
tem.
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Figure 15.13. Overview of adaptation in AVANTI.

Another class of systems in which the tailoring of informa-
tion to individual users can be especially beneficial com-
prises systems that present medical information to patients
(see, e.g., Hirst, DiMarco, Hovy, & Parsons, 1997; Jones
et al., 1999).
Properties of users that may be taken into account in the tai-
loring of documents include: � ’s degree of interest in par-
ticular topics; � ’s knowledge about particular concepts or
topics; � ’s preference or need for particular forms of infor-
mation presentation (for example, AVANTI generates textual
descriptions in lieu of maps for visually impaired users); and
the display capabilities of � ’s computing device (e.g., web
browser vs. cell phone).
Even in cases where it is straightforward to determine the
relevant properties of � , the automatic creation of adapted
presentations can require sophisticated techniques of natu-
ral language generation (see, e.g., Hirst et al., 1997) and/or
multimedia presentation generation (see, e.g., André & Rist,
1995). Various less complex ways of adapting hypermedia
documents to individual users have also been developed (see
Brusilovsky, 1996, Section 6).

3.3 Recommending Products

One of the most practically important categories of UAS to-
day comprises the product recommenders that are found in
many commercial web sites—and also, increasingly, in mo-
bile information servers.3 A screen from a typical film rec-
ommender system, the MOVIECENTRAL web site, is shown
in Figure 15.14. The user has already rated 10 films, as is
required by

�
before any recommendation can be made. On

the basis of these ratings,
�

has identified a set of neigh-
bors for � : other users with tastes similar to � ’s. For the
movie 2001, A Space Odyssey,

�
has generated a “predicted

rating” for � by examining the ratings of the subset of � ’s
neighbors who have rated this movie. � , who has seen this
movie, has provided feedback by giving her actual rating of

3For a more general treatment of the human-computer interaction as-
pects of e-commerce, see the chapter by Vergo et al. in this handbook.



Figure 15.14. Part of a screen from the MOVIECENTRAL film recommendation web site describing the movie “2001, A Space
Odyssey”.
(Screen shot made from http://www.qrate.com/ in January 2001 and edited for compactness. This web site is no longer in operation.)
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Figure 15.15. Overview of adaptation in MOVIECENTRAL.

it. Another common form of adaptation, also shown in the
figure, is the presentation of reviews that have been supplied
by similar users. The general approach to adaptation sum-
marized in Figure 15.14 is called collaborative filtering (see
6.2 for references and further discussion). Many studies have
shown that collaborative filtering techniques produce recom-
mendations whose accuracy for an individual user is usefully
high.
Some product recommenders require � to specify her eval-
uation criteria explicitly instead of simply rating individual
items. For example, if � is looking for a suitable dog with
the help of PERSONALOGIC, the system will ask how im-
portant it is to � that the dog should be easy to train (cf. Fig-
ure 15.22 in 5.1 below). This method offers a natural alter-
native to collaborative filtering when relatively complex and

important decisions are involved for which it is worthwhile
for � to think carefully about the attributes of the products
in question.
A third approach is exemplified by the FINDME family of
recommenders (Burke, Hammond, & Young, 1997; Burke,
2001). The distinguishing feature is an iterative cycle in
which

�
proposes a product (e.g., a restaurant in a given

city), � criticizes the proposal (e.g., asking for a “more ca-
sual” restaurant), and

�
proceeds to propose a similar prod-

uct that takes the critique into account. An advantage of this
approach is that � receives the first recommendations very
quickly. These recommendations, even if not especially suit-
able, can help � to clarify her own product evaluation crite-
ria.4

Various combinations of these approaches, as well as spe-
cific other ideas, have been proposed (see, e.g., Burke, 2001;
Schafer, Konstan, & Riedl, 1999).
Product recommenders address several problems that com-
puter users typically experience when they search for prod-
ucts:
1. � may not know what aspects of the products to attend to
or what criteria should determine her decision. Some recom-
menders either (a) make it less necessary for � to be explic-
itly aware of her evaluation criteria (as when collaborative
filtering is used) or (b) help � to learn about her own criteria
during the course of the interaction with

�
.

2. If � is unfamiliar with the concepts used to characterize
the products, she may be unable to make effective use of

4At the time of this writing, a restaurant recommender from
the FINDME family was available on the world-wide web at
http://infolab.ils.nwu.edu/entree/pub/ .

http://infolab.ils.nwu.edu/entree/pub/
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Figure 15.17. Overview of adaptation in PHELPS.

any search or selection mechanisms that may be provided.
Product recommenders generally reduce this communication
gap by allowing � to specify her criteria (if this is necessary
at all) in terms that are more natural to her.
3. � may have to read numerous product descriptions in
various parts of the site, integrating the information found in
order to arrive at a decision. Once a product recommender
has acquired an adequate user model,

�
can take over a large

part of this work, often examining the internal descriptions
of a much larger number of products than � could deal with
herself.
From the point of view of the vendors of the products con-
cerned, the most obvious potential benefit is that users will
find one or more products that they consider worth buy-
ing, instead of joining the notoriously large percentage of
browsers who never become buyers (cf. Schafer et al., 1999).
A related benefit is the prospect of cross-selling:

�
’s model

of � can be employed for the recommendation of further
products that � might not have considered herself. Finally,
some vendors aim to build up customer loyalty with recom-
menders that acquire long-term models of individual cus-
tomers: If � believes that

�
has acquired an adequate model

of her, � will tend to prefer to use
�

again rather than starting
from scratch with some other system.

3.4 Supporting Collaboration

The increasing tendency for computer users to be linked via
networks has made it increasingly feasible for users to col-
laborate, even in a spontaneous way and without prior ac-
quaintance. A system that has models of a large number of
users can facilitate such collaboration by taking into account
the ways in which users match or complement each other.
A well-known example of a system of this sort is PHELPS
(see, e.g., Collins et al., 1997; Greer et al., 1998). PHELPS
is part of the Offender Management System used in the Cor-
rectional Services of Canada. It is designed to support rel-
atively inexperienced workers (e.g., trainees) who are not
sure how to handle a particular task that they are working

on (see, e.g., the screen in Figure 15.16). The system sug-
gests helpers who (a) have the relevant specific knowledge,
(b) are available to provide help in the time frame required,
(c) have not been overburdened with other help requests in
the recent past; and (d) have other relevant positive charac-
teristics (e.g., speaking the same language as � ). PHELPS
was found to work as expected and to be accepted by rep-
resentative potential users in a small-scale study with four
trainees (Greer et al., 1998).
User modeling has been applied in connection with several
(partially overlapping) types of collaboration:

In computer-supported learning environments, in which
the idea of collaborative learning has gained popularity in
recent years (see, e.g., Paiva, 1997).
As a way of providing “intelligent help” for complex tasks
(see, e.g., Vivacqua & Lieberman, 2000). Putting a hu-
man expert into the loop is a way of avoiding some of the
difficulties associated with fully automatic adaptive help
systems (2.3).
In environments for computer-supported cooperative work
within organizations (see, e.g., McDonald & Ackerman,
2000).

3.5 Supporting Learning

Research on student modeling—or learner modeling, as it
has been called more often in recent years—aims to add user-
adaptivity to computer-based tutoring systems and learning
environments (cf. Corbett, Koedinger, & Anderson, 1997,
and the chapter by Emurian & Durham in this handbook).5

Increasingly, learning environments are being made avail-
able on the world-wide web. An example is ELM-ART (We-
ber & Specht, 1997), which teaches users the programming
language LISP. Figure 15.18 illustrates just one of the sys-
tem’s adaptive functions: the way in which it guides learners
to parts of a course that it would be appropriate for them to
study at a given time, given the skills that they have been
observed to possess so far.

�
signals the suitability of learn-

ing units to � in two different ways, without restricting � ’s
freedom to explore the learning environment on her own: (a)
Link annotations (realized here as color-coded folders) in-
dicate the extent to which a visit to a given unit is recom-
mended. (b) The button at the bottom of the screen recom-
mends a single unit that it would be especially appropriate
for � to visit next.
Interaction in intelligent tutoring systems and intelligent
learning environments can take many forms, ranging from
tightly system-controlled tutoring to largely free exploration
by the learner. In addition to navigation support (illustrated
here by ELM-ART), aspects of the system that can be adapted
to the individual user include: (a) the selection and the form
of the instructional information presented; (b) the content of

5Good sources of literature include the International Journal of Artificial
Intelligence in Education and the proceedings of the biennial Conferences
on Artificial Intelligence in Education (see, e.g., Lajoie & Vivet, 1999).



Figure 15.16. Screen shot from the PHELPS system.
(� is having difficulty arranging an escorted temporary absence for a prisoner. � offers information on a number of possible helpers at various places in
Canada. The window in the right-hand side of the screen shows a profile of a potential helper’s knowledge of the task in question. Figure 2 of “Supporting
peer help and collaboration in distributed workplace environments,” by J. E. Greer, G. I. McCalla, J. A. Collins, V. S. Kumar, P. Meagher, and J. Vassileva,
1998, International Journal of AI and Education, 9, pp. 159–177. Copyright 1998 by The International Artificial Intelligence in Education Society. Adapted
with permission.)

Recommended unit 

Unit assumed known 

Units assumed too difficult 

Figure 15.18. Example screen from ELM-ART showing the system’s assessment of the suitability of particular learning units
for the current user.
(Screen shot made from http://www.psychologie.uni–trier.de:8000/elmart in December 2000. In the actual system, the different colors of the folder icons are
clearly distinguishable. Adapted with the permission of Gerhard Weber.)
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Figure 15.19. Overview of adaptation in ELM-ART.

problems and tests; and (c) the content and timing of hints
and feedback.
Learner modeling systems may adapt their behavior to any of
a broad variety of aspects of the user, such as: (a) � ’s knowl-
edge of the domain of instruction, including knowledge ac-
quired prior to and during the use of

�
; (b) � ’s learning

style, motivation, and general way of looking at the domain
in question; and (c) the details of � ’s current processing of
a problem.
The underlying assumption is that the adaptation of

�
’s be-

havior to some of these properties of the learner can lead to
more effective and/or more enjoyable learning. One series of
studies that directly demonstrates the added value of learner-
adaptive tutoring is described by Corbett (2001). Many other
evaluation studies assess the effectiveness of an entire sys-
tem and therefore do not pinpoint the contribution of learner-
adaptivity (see, e.g., Corbett, McLaughlin, & Scarpinatto,
2000, p. 91).

4 Usability Challenges

Some of the typical properties of user-adaptive systems can
lead to usability problems that may outweigh the benefits
of adaptation to the individual user. Discussions of these
problems have been presented by a number of authors (see,
e.g., Höök, 2000; Lanier, 1995; Norman, 1994; Schaumburg,
2001; Shneiderman, 1995; Wexelblat & Maes, 1997). Fig-
ure 15.20 gives a high-level summary of many of the relevant
ideas.
The Usability Goals shown in the third column correspond
to several generally desirable properties of interactive sys-
tems. Those listed in the top three boxes (PREDICTABILITY AND

TRANSPARENCY, CONTROLLABILITY, and UNOBTRUSIVENESS) cor-
respond to general usability principles (see, e.g., the chap-
ters by Stewart & Travis, by Cockton et al., and by van der
Veer & Puerta Melguizo in this handbook. The remaining
two goals, maintenance of PRIVACY and of BREADTH OF EXPERI-

ENCE, are especially relevant to UASs.
The column Typical Properties lists some frequently en-

countered (though not always necessary) properties of UASs,
each of which has the potential of causing difficulties with
respect to one or more of the usability goals.
Each of the remaining two columns shows a different strat-
egy for ensuring that the usability goals are nonetheless re-
alized: Each of the Preventive Measures aims to ensure
that a typical property is not present in such a way that it
would cause problems. Each of the Compensatory Mea-
sures aims to ensure in some other way that one or more
goals are achieved despite the threats created by the typical
properties.
A discussion of all of the relationships indicated in Fig-
ure 15.20 would exceed the scope of this chapter, but some
remarks will help to clarify the main ideas.

4.1 Predictability and Transparency

The concept of predictability refers to the extent to which a
user can predict the effects of her actions. Transparency is
the extent to which she can understand system actions and/or
has a clear picture of how the system works (cf. the chapter
by van der Veer & Puerta Melguizo in this handbook). These
properties are grouped together here because they are asso-
ciated with largely the same set of other variables.
As the numbered items in the box PREDICTABILITY AND TRANS-

PARENCY indicate, users can try to predict and understand a
system on several different levels of detail.
1. Exact layout and responses. Especially detailed pre-
dictability is important when interface elements are involved
that are accessed frequently by skilled users—for example,
icons in control panels or options in menus (cf. 2.2). If the
layout and behavior of the system is highly predictable—in
fact, essentially identical—over time, skilled users can en-
gage in automatic processing (see, e.g., Hammond, 1987):
They can use the parts of the interface quickly, accurately,
and with little or no attention. In this situation, even mi-
nor deviations from complete predictability on a fine-grained
level can have the serious consequence of making automatic
processing impossible or error-prone.
2. Success at specific subtasks. Users may desire only more
global predictability and transparency when

�
is performing

some more or less complex task on � ’s behalf (e.g., search-
ing for suitable products on the web): In the extreme case,�

may want only to predict (or evaluate) the quality of the
result of a complex system action.
3. Overall competence. The most global form of predictabil-
ity and transparency concerns � ’s ability to assess

�
’s over-

all level of competence: the degree to which
�

tends in gen-
eral to perform its tasks successfully. With many types of
system, high overall competence can be taken for granted;
but as we have seen, the processes of acquiring and apply-
ing user models do not in general ensure a high degree of
accuracy. If � seriously overestimates

�
’s competence, she

may rely on
�

excessively; if she underestimates
�

, she will
not derive the potential benefits that

�
can provide. A factor
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Figure 15.20. Overview of usability challenges for user-adaptive systems.
(Solid and dashed arrows denote positive and negative causal influences, respectively; further explanation is given in the text.)

that is especially important with regard to this global level is
the way in which the adaptive part of

�
is presented to � .

Some UASs (such as the OFFICE ASSISTANT, 2.3) have em-
ployed lifelike characters, for various reasons. As has often
been pointed out, such anthropomorphic representations can
invoke unrealistically high expectations concerning system
competence—not only with regard to capabilities like natu-
ral language understanding but also with regard to

�
’s ability

to understand and adapt to � .
In general, the levels and degrees of predictability and trans-
parency that are necessary or desirable in a given case can
depend on many factors, including the function that is being
served by the adaptation and � ’s level of skill and experi-
ence. The same is true of the choice of the measures that are
most appropriate for the achievement of predictability and
transparency.

4.2 Controllability

Controllability refers to the extent to which � can bring
about or prevent particular actions or states of

�
if she has

the goal of doing so. Although controllability tends to be en-

hanced by transparency and predictability, these properties
are not perfectly correlated. For example, when � clicks on
a previously unused option in SMART MENUS (2.2), she can
predict with certainty that it will be moved to the main part of
its menu; but � has no control over whether this change will
be made—except through the drastic step of deactivating the
entire SMART MENUS mechanism.
A typical measure for ensuring some degree of control is to
have

�
submit any action with significant consequences to

� for approval. This measure may have negative impact on
the usability goal of unobtrusiveness (see below); so it is an
important interface design challenge to find ways of making
recommendations in an unobtrusive fashion that still makes it
easy for � to notice and follow up on them (cf. Figures 15.1,
15.6, and 15.12).
Like predictability and transparency, controllability can be
achieved on various levels of granularity (see the items in
the box labeled CONTROLLABILITY in Figure 15.20). Especially
since the enhancement of controllability can come at a price,
it is important to consider what kinds of control will really
be desired. For example, there may be little point in submit-



ting individual actions to for approval if lacks the knowledge
or interest required to make the decisions. Wexelblat and
Maes (1997) recommend making available several alterna-
tive types of control for users to choose from.

4.3 Unobtrusiveness

We will use the term obtrusiveness to refer to the extent to
which

�
places demands on the user’s attention which reduce

� ’s ability to concentrate on her primary tasks. This term—
and the related words distracting and irritating—are often
heard in connection with UASs. Figure 15.20 shows that
(a) there are several different reasons why UASs can easily
turn out to be obtrusive and (b) there are equally many cor-
responding strategies for minimizing obtrusiveness. Some
of these measures can lead straightforwardly to significant
improvements—for example, when it is recognized that dis-
tracting lifelike behaviors of an animated character are not
really a necessary part of the system.

4.4 Privacy

User-adaptive systems typically (a) gather data about indi-
vidual users and (b) use these data to make decisions that
may have more or less serious consequences. Users may ac-
cordingly become concerned about the possibility that their
data will be put to inappropriate use. Privacy concerns tend
to be especially acute in e-commerce contexts (cf. 3.3; Ghosh
& Swaminatha, 2001), and with some forms of support for
collaboration (3.4), because in these cases (a) data about �
are typically stored on computers other than the user’s own,
(b) the data often include personally identifying information;
and (c) there may be strong incentives to use the data in ways
that are not dictated by � ’s own interests. As will be dis-
cussed in Section 5, different means of acquiring informa-
tion about users can have different consequences with regard
to privacy. On the other hand, many of the measures that can
be taken to protect privacy—for example, a policy of storing
as little personally identifying data as possible—are not spe-
cific to UASs (see the chapters by Diller & Masten and by
Friedman & Kahn in this handbook).

4.5 Breadth of Experience

When a UAS helps � with some form of information acqui-
sition (Section 3), much of the work of examining the indi-
vidual documents, products, and/or people involved is typi-
cally taken over by

�
. A consequence can be that � ends up

learning less about the domain in question than she would
with a nonadaptive system (cf. Lanier, 1995). For example,
if

�
recommends apartments in a given region to � (see, e.g.,

Burke et al., 1997; Shearin & Lieberman, 2001) and � sim-
ply accepts one of the recommendations, � may learn less
about the real estate market in that region than she would if
she took the trouble to search systematically through a real
estate web site. One point of view here (see, e.g., Shneider-
man & Maes, 1997, p. 53) is that it should be up to the user to
decide whether she prefers to learn about a given domain or

to save time by delegating work to a system. It may be worth-
while to give � a continuous spectrum of possibilities be-
tween complete control over a task and complete delegation
of it. For example, many product recommendation systems
allow users to alternate freely between pursuing

�
’s recom-

mendations and browsing through product descriptions in the
normal way.
A second way in which adaptivity can narrow the user’s ex-
perience is through excessive reliance on an incomplete user
model. For example, suppose that an apartment seeker has so
far shown interest only in apartments in the Bellvue area: If�

accordingly supplies information only about other apart-
ments in this area,

�
may never discover that � is willing

to consider apartments in other areas. Some systems miti-
gate this problem by systematically proposing solutions that
are not dictated by the current user model (see, e.g., Linden,
Hanks, & Lesh, 1997; Shearin & Lieberman, 2001).

5 Obtaining Information About Users

Some of the usability challenges discussed in the previous
section are closely connected with the ways in which infor-
mation about individual users is acquired—a consideration
which also largely determines the success of a system’s adap-
tation. The next two subsections will look, respectively, at
(a) information that � supplies to

�
explicitly for the purpose

of allowing
�

to adapt; and (b) information that
�

obtains in
some other way.

5.1 Explicit Self-Reports and -Assessments

Self-Reports About Objective Personal Characteristics

Information about objective properties of the user (such as
age, profession, and place of residence) often has implica-
tions that are relevant for system adaptation—for example,
concerning the topics that � is likely to be knowledgeable
about or interested in. This type of information also has the
advantage of changing relatively infrequently. Many UASs
request information of this type from users, but the following
caveats apply:
1. Specifying information such as profession and place of
residence may require a fair amount of tedious menu selec-
tion and/or typing.
2. Since information of this sort can often be used to de-
termine the user’s identity, � may justifiably be concerned
about privacy issues (cf. 4.4). Even in cases where such con-
cerns are unfounded, they may discourage � from entering
the requested information.
Some systems (e.g., the adaptive tour guide AMPRES, de-
scribed by Rössel, 2000) address these problems by (a) re-
stricting requests for personal data to the few pieces of in-
formation (if any) that

�
really requires; and (b) explaining

the uses to which the data will be put. A novel approach was
tried in the web-based LIFESTYLE FINDER prototype (Fig-
ure 15.21, Krulwich, 1997), which was characterized by a
playful style and an absence of requests for personally iden-



 

Behold! Waldo senses one of these homes resembles your 
abode. Of course, Waldo could tell you which one is like 

show Waldo in which type of home you live.
yours, but Waldo doesn’t like to give the store away. So kindly

Figure 15.21. Example of a screen with which the
LIFESTYLE FINDER elicits demographic information.
(Figure 3 of “Lifestyle Finder: Intelligent user profiling using large-scale
demographic data,” by B. Krulwich, 1997, AI Magazine, 18(2), pp. 37–45.
Research conducted at the Center for Strategic Technology Research of An-
dersen Consulting (now Accenture Technology Labs). Copyright 1997 by
the American Association for Artificial Intelligence. Adapted with permis-
sion.)

tifying information. Of the users surveyed, 93% agreed that
the LIFESTYLE FINDER’s questions did not invade their pri-
vacy.
It is sometimes possible to avoid requests for explicit input
about personal characteristics by accessing sources where
similar information has already been stored (see 5.2).

Self-Assessments With Respect to General Dimensions

It is sometimes helpful for
�

to have an assessment of a prop-
erty of � that can be expressed naturally as a position on a
particular general dimension: the level of � ’s interest in a
particular topic, the level of her knowledge about it, or the
importance that � attaches to a particular evaluation crite-
rion. Often an assessment is arrived at through inference on
the basis of other evidence—for example, using the inference
techniques discussed in 6.1 and 6.3. But it may be quicker,
if feasible, to ask � for an explicit assessment. Figure 15.22
shows a typical rating scale. Some systems use checkboxes,
which make it possible for � to give quick “yes/no” ratings
for a larger number of dimensions (see, e.g., Pazzani & Bill-
sus, 1999).
This assessment method raises basically the same problems
that have long been familiar in fields, such as psychology
and marketing research, in which questionnaires are regu-
larly used. For example, users may not know the exact mean-
ing of the various points on the scale, and they may be in-
clined to answer in a way that seems socially desirable (see,
e.g., King & Bruner, 2000). Too often, the design of this type
of scale for a UAS does not adequately take into account the
methodological knowledge that has been built up with regard
to such problems (see, e.g., the chapters by Blomberg et al.,
and by Karat in this handbook).
The effort involved in this type of self-assessment is more
cognitive than physical, but it can still be enough to discour-
age users. So as with requests concerning personal char-
acteristics, it is in general worthwhile to consider ways of

Figure 15.22. Rating scale from the PERSONALOGIC deci-
sion guide for dog seekers.
(Part of a screen shot made from http://www.purina.personalogic.com in
July 2001. Before mid-2001 many similar recommenders had been available
via http://www.personalogic.com.)

minimizing such requests, making responses optional, and
ensuring that the purpose is clear.

Self-Reports on Specific Evaluations

Instead of asking � to assess her position on a dimension ex-
plicitly, some systems try to infer � ’s position on the basis
of her explicitly evaluative responses to specific items. For
this purpose,

�
may present icons (e.g., “thumbs-up” and

“thumbs-down”), checkboxes, or rating scales. The items
that � evaluates can be (a) items that � is currently experi-
encing directly (e.g., the current web page), (b) actions that

�

has just performed (see, e.g., Billsus & Pazzani, 2000; Wolf-
man et al., 2001), (c) items that � must judge on the basis
of a description (e.g., the abstract of a talk; a table listing the
attributes of a physical product), or (d) the mere name of an
item (e.g., a movie) that � may have had some experience
with in the past (see, e.g., Figure 15.14). The physical effort
required is usually that of a simple action such as a mouse
click. The cognitive effort depends in part on how directly
available the item is: In the third and fourth cases just listed,

� may need to perform memory retrieval and/or inference in
order to arrive at an evaluation.
Even when the effort is minimal, users often do not like to
bother with explicit evaluations that do not constitute a nec-
essary part of the task they are performing. One way of
dealing with this problem is to develop inference methods
that can make use of even a small number of explicit as-
sessments of individual items (see Section 6). Another ap-
proach is to have

�
interpret naturally occurring actions of �

(e.g., selection vs. skipping of news stories whose headlines
are displayed on a screen) as implicit evaluations (cf. 5.2).
These two approaches were evaluated by Billsus and Paz-
zani (2000) in two variants of the ADAPTIVE NEWS SERVER
(3.1).

Responses to Test Items

In systems that support learning (3.5), it is often natural to
administer tests of knowledge or skill. In addition to serv-
ing their normal educational functions, these tests can yield
valuable information for

�
’s adaptation to � . An advantage

of tests is that they can be constructed, administered, and
interpreted with the help of a large body of theory, method-
ology, and practical experience (see, e.g., Wainer, 2000).



Outside of a learning context, users will in general be re-
luctant to invest time in tests of knowledge or skill, unless
these can be presented in an enjoyable form (see, e.g., the
color discrimination test used by Gutkauf, Thies, & Domik,
1997, to identify perceptual limitations relevant to the auto-
matic generation of graphs). But it is sometimes possible to
design a part of a system so that it functions as a concealed
test, in addition to serving its primary function (e.g., of pro-
viding information). For example, the AMPRES hypertext
system (Rössel, 2000) includes an introductory sequence in
which � can request explanations of various concepts that
are used within the system. This sequence is designed so
that the pattern of � ’s requests can be interpreted as if they
were answers to items on a knowledge test.

5.2 Nonexplicit Input

Naturally Occurring Actions

The broadest and most important category of information
about users includes all of the actions that � performs with�

that do not have the express purpose of revealing infor-
mation about � to

�
. These actions may range from ma-

jor actions like purchasing an expensive product to minor
ones like scrolling down a web page. The more significant
actions tend to be specific to the particular type of system
that is involved (e.g., e-commerce sites vs. learning environ-
ments). Within some domains, there has been considerable
research on ways of interpreting particular types of naturally
occurring user actions. For example, researchers interested
in adaptive hypertext navigation support have developed a
variety of ways of analyzing � ’s navigation actions to in-
fer � ’s interests and/or to propose navigation shortcuts (see,
e.g., Goecks & Shavlik, 2000).
In their purest form, naturally occurring actions require no
additional investment by the user, because they are actions
that � would perform anyway. The main limitation is that
they are hard to interpret; for example, the fact that a given
web page has been displayed in � ’s browser for 4 minutes
does not reveal with certainty which (if any) of the text dis-
played on that page � has actually read. Some designers
have tried to deal with this tradeoff by designing the user in-
terface in such a way that the naturally occurring actions are
especially easy to interpret. For example, a web-based sys-
tem might display just one news story on each page, even if
displaying several stories on each page would normally be
more desirable.
The interpretation of naturally occurring actions by

�
can

raise privacy and transparency issues (cf. Figure 15.20) that
do not arise in the same way with explicit self-reports and
self-assessments (5.1): Whereas the latter way of obtaining
information about the user can be compared with interview-
ing, the former way is more like eavesdropping—unless � is
informed about the nature of the data that are being collected
and the ways in which they will be used (cf. Martin, Smith,
Brittain, Fetch, & Wu, 2001).

Previously Stored Information

Sometimes a system can access relevant information about
� which has been acquired and stored independently of

�
’s

interaction with � :
1. If � has some relationship (e.g., patient, customer) with
the organization that operates

�
, this organization may have

information about � that it has stored for reasons unrelated
to any adaptation (e.g., � ’s medical record or address).
2. Relevant information about � may be stored in publicly
available sources such as electronic directories or web home-
pages. For example, Pazzani (1999) explores the idea of us-
ing a user’s web homepage as a source of information for a
restaurant recommending system.
3. If there is some other system that has already built up
a model of � ,

�
may be able to access the results of that

modeling effort and try to apply them to its own modeling
task. There is a line of research that deals with user model-
ing servers (see, e.g., Kobsa, 2001): systems that store infor-
mation about users centrally and supply such information to
a number of different applications. Some of the major com-
mercial personalization software is based on this conception
(see Fink & Kobsa, 2000, for an overview).
Relative to all of the other types of information about users,
previously stored information has the advantage that it can
in principle be applied right from the start of the first inter-
action of a given user with a given system. To be sure, the
interpretability and usefulness of the information in the con-
text of the current application may be limited. Moreover,
questions concerning privacy and transparency may be even
more important than with the interpretation of naturally oc-
curring actions.

Low-Level Indices of Psychological States

The next two categories of information about � have become
practically feasible only in recent years, with advances in the
miniaturization of sensing devices (cf. the chapter by Hinck-
ley in this handbook).
The first category of sensor-based information (discussed at
length by Picard, 1997) comprises data that reflect aspects
of a user’s psychological state, such as: (a) anger and frus-
tration, which have especially clear relevance in the context
of automated spoken dialogs with customers; (b) attraction
to particular items, especially relevant for recommender sys-
tems; and (c) stress and cognitive load, which can be im-
portant factors when � is performing a challenging task (or
several tasks at once), such as driving.
Two categories of sensing devices have been employed:
(a) devices attached to � ’s body (or to the computing de-
vice itself) that transmit physiological data, such as elec-
tromyogram signals, the galvanic skin response, blood vol-
ume pressure, and the pattern of respiration; and (b) video
cameras and microphones that transmit psychologically rel-
evant information about � , such as features of her facial ex-
pressions (Picard, 1997) or her speech (e.g., pitch, intensity,



and quality of articulation; or more linguistic features such
as the length of utterances and the occurrence of pauses—
see Müller, Großmann-Hutter, Jameson, Rummer, & Wittig,
2001).
With both categories of sensors, the extraction of meaningful
features from the low-level data stream requires the applica-
tion of pattern recognition techniques. These typically make
use of the results of machine learning studies in which the re-
lationships between low-level data and meaningful features
have been learned.
While it is sometimes possible to recognize a psychological
state (such as anger) on the basis of sensor data alone, often
this type of information needs to be combined with other
types before reliable recognition is possible.
One advantage of sensors is that they supply a continuous
stream of data, the cost to � being limited to the physical and
social discomfort that may be associated with the carrying or
wearing of the devices. These factors are significant now, but
further advances in miniaturization—and perhaps changing
attitudes as well—seem likely to reduce their importance.

Signals Concerning the Current Surroundings

As computing devices become more portable, it is becoming
increasingly important for a UAS to have information about

� ’s current surroundings (cf. the chapter by Stephanidis in
this handbook). Here again, two broad categories of input
devices can be distinguished:
1. Devices that receive explicit signals about � ’s surround-
ings from specialized transmitters. Some mobile systems
that are used outdoors (see, e.g., Dey, Abowd, & Wood,
1998) employ GPS (Global Positioning System) technology.
More specialized transmitters and receivers are required, for
example, if a portable museum guide system is to be able to
determine which exhibit � is looking at.
2. More general sensing or input devices. For example,
Schiele, Starner, Rhodes, Clarkson, and Pentland (2000) de-
scribe the use of a miniature video camera and microphone
(each roughly the size of a coin) that enable a wearable com-
puter to discriminate among different types of surroundings
(e.g., a supermarket vs. a street). The use of general-purpose
sensors eliminates the dependence on specialized transmit-
ters. On the other hand, the interpretation of the signals re-
quires the use of sophisticated machine learning and pattern
recognition techniques.

6 Learning, Inference, and Decision Making

A distinguishing feature of user-adaptive systems is the cen-
tral role of techniques for user model acquisition and applica-
tion (Figure 15.2). These techniques enable

�
to learn about

individual users and make inferences and decisions about
them. The present section describes the most important prop-
erties of several commonly used computational paradigms,
which differ in terms of the contributions that they can make
and the conditions under which they can be applied effec-
tively.

6.1 Classification Learning

Many UASs employ learning methods from a broad category
of machine learning techniques called classification learn-
ing. A great variety of methods have been developed within
this paradigm, including: decision trees, probabilistic classi-
fiers, neural networks, case-based reasoning, and specialized
text-classification methods.6

From a broad perspective, the differences among these meth-
ods are less important than the basic nature of a classification
learning problem, which will be illustrated with examples
below: The learning procedure starts with a set of training
examples, each of which is characterized in terms of its fea-
tures. Each training example has been classified, that is, as-
signed to one of a set of two or more categories. On the basis
of these examples, the procedure learns a classifier: a model
that is capable of assigning a new item to one of the same set
of categories. Usually the assignment for a new item cannot
be made with certainty; accordingly, some methods yield a
set of possible assignments for each item, each assignment
being associated with some index of

�
’s confidence.

Example Systems

These concepts are illustrated clearly by the SWIFTFILE sys-
tem (Figure 15.1), which learns how to classify a user’s email
messages in (more or less) the same way as � would herself.
At any given time, the training examples are the messages
that � has filed so far, and the categories correspond to � ’s
email folders. Once

�
has learned how to classify like � ,

�

can predict how � will classify any given message—though
of course not with perfect accuracy.
The particular type of model that SWIFTFILE learns takes
advantage of the fact that each item to be classified (i.e., each
email message) contains a large number of words that serve
as features. SWIFTFILE employs well-established text clas-
sification methods from the information retrieval field to ar-
rive at a representation of each email folder as a weighted
word-frequency vector. To classify a new message, SWIFT-
FILE essentially compares the distribution of the words in its
text with the current representations of � ’s folders (Segal &
Kephart, 1999, 2000).
Here are some further examples of the use of classification
learning for UASs:
1. Many systems that recommend or select documents (e.g.,
the ADAPTIVE NEWS SERVER, discussed in 3.1) employ
some form of classification learning to learn to predict which
documents a given � will like. The relevant features of
the documents may include, in addition to the words in the
text, attributes like length or date of appearance. Recom-
menders of this type are sometimes called content-based rec-
ommenders, because their predictions are based mainly on
the content of the documents in question, as opposed, say, to

6Han and Kamber (2001), Langley (1996), and Mitchell (1997) offer
broad overviews of statistical and machine learning techniques, some of
which are related to those discussed in this section. The role of machine
learning in UASs is reviewed by Webb, Pazzani, and Billsus (2001).



the ratings of those items by other users (cf. 6.2 below).
2. CASPER (Bradley, Rafter, & Smyth, 2000) filters the
search results returned by a job-finding web site by learning
to predict which job offers the current � will like or dislike,
on the basis of � ’s ratings of previous job offers. It makes
use of the nearest neighbor classification method, and it em-
ploys a relatively sophisticated scheme for analyzing the fea-
tures of job offers.
3. By observing how � enters appointments into a calen-
dar system, the CALENDAR APPRENTICE (Mitchell et al.,
1994) learns how to predict the properties of appointments
that � makes, such as their location and duration. It employs
the method of decision tree induction, which in effect yields
rules for predicting the remaining features of an appointment
on the basis of features that have already been specified.

Requirements

Two of the prerequisites for the application of classification
learning methods may be hard to fulfill in some cases:
1. It may not be straightforward to characterize the items in
question in terms of features. For example, when the items
are images or music clips, it may be a challenging task to ex-
tract useful features (e.g., concerning content or style) from
the digital representations of the items. When the items are
nonelectronic objects to which the computer has no direct ac-
cess (e.g., products offered for sale in an e-commerce site),
information about their adaptation-relevant features must be
(a) obtained from some existing information source or (b)
entered specifically for the purpose of enabling adaptation.
2. It may not be possible for

�
to process an adequate num-

ber of training examples before it has to begin classifying
new items. Depending on the nature of the system in ques-
tion, users may or may not be willing to grant

�
ample train-

ing time before they expect useful adaptation to occur. There
is currently a good deal of research into classification meth-
ods for UASs that can learn on the basis of a minimal num-
ber of examples. SWIFTFILE’s text classification method
rates well in this respect, and sometimes the nearest neigh-
bor method (exemplified by the CASPER system) does so
as well (see, e.g., Billsus & Pazzani, 2000). A different ap-
proach is to allow � to give

�
hints, in the form of explicit

self-reports (5.1), that allow
�

to create an initial, partially
accurate model that serves as a basis for further learning (see,
e.g., Section 4 of Pazzani & Billsus, 1997).

6.2 Collaborative Filtering

The paradigm of collaborative filtering was illustrated in
3.3 with the movie recommender system MOVIECENTRAL.
More generally, the approach is used for the prediction of the
responses (e.g., ratings or purchases) of a user to items (e.g.,
documents or products) to which other users have previously
responded. The distinguishing property of the paradigm is
the fact that each item is characterized in terms of the pre-
vious responses of other users, not in terms of its intrinsic

features.7 Figure 15.23 summarizes a typical computational
procedure.

Requirements

As with classification learning, certain prerequisites of the
pure collaborative filtering paradigm are in some cases hard
to fulfill:
1. For some of the items about which a prediction is to be
made for � , there may not be a sufficiently large number of
responses available in the database that have been made to
these items by users similar to � (or indeed by any users).
For example, when new items continually enter the database
and remain interesting for only a short time (e.g., news sto-
ries that are being fed in by a news service), they may have
lost their importance by the time enough responses to them
have been accumulated.
2. � may not be willing to give a sufficient number of re-
sponses to items before receiving useful recommendations.
In particular, � may want to be able to specify a general
preference explicitly, such as “I like science fiction movies”.
The only way for � to convey a preference like this in
MOVIECENTRAL would be by (a) requesting the opportu-
nity to rate a number of science fiction movies and (b) giving
all of them high ratings.

Combinations With Other Paradigms

Some ingenious schemes have been devised for combining
the basic strategy of collaborative filtering with other meth-
ods, so as to overcome some of the limitations of the pure
form (see, e.g., Good et al., 1999, for an empirical compari-
son of a number of hybrid methods). Some researchers have
explored ways of identifying suitable neighbors who have
not necessarily responded to many of the same items as � ;
instead,

�
can take into account their similarity to � in terms

of personal characteristics (Pazzani, 1999) or interest pro-
files (Balabanović & Shoham, 1997). Good et al. (1999) go
a step further by introducing artificial “neighbors” who serve
to fill in the gaps left by a user’s human neighbors: Each such
neighbor is an agent that implements a content-based predic-
tion method, such as one that uses text classification methods
(cf. 6.1).

6.3 Decision-Theoretic Methods

Basic Characteristics

A remarkable fact about the two paradigms discussed so far
is that they are almost entirely data-based: They make use
of virtually no general knowledge about users, their goals,
or the items that they are dealing with. By contrast, the next
paradigm represents a class of more theory-based methods:
The system designers build into their models a good deal of
knowledge about the variables that are relevant in a given
interaction situation.

7The less frequently used term social recommendation is on the whole
more apt than collaborative filtering, since neither active collaboration nor
filtering are essential aspects of the approach.



To identify neighbors for U: 
1. Store U’s ratings of items. 
2. For each user U* in a sample of other users, compute an 

agreement strength with U on the basis of: 
• the difference between the ratings of U* and U; 
• the number of items rated by both U* and U. 

3. Decide whether to add U* as a neighbor on the basis of: 
• the agreement strength of U* with U; 
• the total number of items rated by U*; 
• the degree to which the total proportion of items rated 

by U’s neighbors would be increased if U* were 
added. 

To make recommendations for U: 
1. For each item, use the ratings of U’s 

neighbors to compute: 
• a predicted rating for U; 
• a degree of confidence in this 

prediction; 
• the extent of disagreement among 

U’s neighbors with regard to that 
item. 

2. Base recommendations on these 
factors (among others). 

Figure 15.23. Summary of a typical algorithm for generating recommendations through collaborative filtering.

U’s expertise Difficulty of 
current task 

U needs 
assistance? 

U is 
distracted? 

Recent menu 
surfing? 

Pause after 
activity? 

Figure 15.24. Part of a Bayesian network used in the
LUMIÈRE prototype for inferring the likelihood that � re-
quires assistance.
(Adapted from Figure 2 of “The Lumière project: Bayesian user model-
ing for inferring the goals and needs of software users,” by E. Horvitz, J.
Breese, D. Heckerman, D. Hovel, and K. Rommelse, 1998, in G. F. Cooper
& S. Moral (Eds.), Uncertainty in Artificial Intelligence: Proceedings of the
Fourteenth Conference, pp. 256–265, San Francisco: Morgan Kaufmann.
Copyright 1998 by Morgan Kaufmann Publishers. Adapted with permis-
sion.)

For example, the partial Bayesian network in Figure 15.24
shows a few of the assumptions made by the designers of the
LUMIÈRE adaptive help prototype (2.3).8 . Each rectangle
represents a variable about which

�
in general has only an

uncertain belief. For example, the probability that the value
of � NEEDS ASSISTANCE? is true at a given moment might be es-
timated as 89%, as in the situation illustrated in Figure 15.6.
Arrows represent probabilistic relationships among the vari-
ables, which can usually be interpreted as causal influences.
For example, this network states that � ’s need for assistance
from

�
will depend largely on � ’s expertise in using

�
and

on the difficulty of the task that � is currently dealing with.
In turn, � ’s need for assistance will influence the occurrence
of behaviors of � such as surfing through menus and/or paus-
ing after performing some actions.

8A good introductory overview of Bayesian networks and other
decision-theoretic techniques is given by Jensen (2001); the classic work
is by Pearl (1988). An early survey of applications within UASs is given by
Jameson (1996), and recent developments are discussed by Zukerman and
Albrecht (2001).

Sometimes
�

obtains information that leads to certainty
about the value of a particular variable. This new certain be-
lief is then propagated through the Bayesian network accord-
ing to an applicable algorithm, and

�
’s beliefs concerning

the other variables in the network are adjusted accordingly.
For example, when a “pause after activity” is observed, the
probabilities associated with � NEEDS ASSISTANCE? and � IS

DISTRACTED? will in general increase.9

Potential Advantages

Relative to the simpler data-based models discussed in the
previous two sections, theory-based Bayesian networks offer
several potential advantages, including the following:
1.

�
can make useful inferences about a user � without first

acquiring any long-term model of � on the basis of data.
For example,

�
might offer the advice shown in Figure 15.6

after observing just a few of � ’s actions within a spreadsheet
application.
2. With the help of other closely related decision-theoretic
techniques, the probabilistically expressed beliefs generated
by a Bayesian network can be used to make adaptation de-
cisions. Such a decision-making process quantitatively takes
into account the possible consequences of

�
’s actions and

the overall utility of these consequences. For example,
�

can
quantitatively weigh the expected benefits of offering advice
against the possible costs in terms of time and distraction.
Note that the two paradigms discussed above—classification
learning and collaborative filtering— yield predictions about
a user (e.g., about the films that � is most likely to en-
joy); they do not yield decisions as to what

�
should do

(e.g., how many films should be recommended to � , and in
what form?). With these paradigms, therefore, the system
designer must specify in advance how

�
’s predictions are to

be translated into
�

’s actions. By contrast, decision-theoretic
methods allow

�
to select actions more flexibly, taking into

account � ’s perceived priorities and the details of the cur-

9More complex, application-specific Bayesian networks are used to es-
timate what particular help topics are most likely to be relevant to � ; see
Figure 3 of Horvitz et al. (1998).



rent situation (cf. Jameson et al., 2001). To be sure, this
greater flexibility may sometimes diminish the predictabil-
ity and transparency of

�
’s actions (cf. 4.1).

Requirements

The major challenge in the development of decision-
theoretic UASs concerns the construction of suitable gen-
eral models, which are almost always much more complex
than the partial model shown in Figure 15.24. If the con-
struction is purely theory-based, one or more persons with
relevant knowledge must specify the qualitative and quanti-
tative relationships among the variables of the model, some
of which are typically unobservable. It is in general difficult
to make well-founded judgments about all aspects of such a
model. In recent years, many techniques have been devel-
oped for learning decision-theoretic models at least partly on
the basis of data (see, e.g., Heckerman, 1998). In connec-
tion with UASs, these methods have been applied success-
fully with relatively simple models (see, e.g., Müller et al.,
2001) that are similar to the types of data-based model that
were discussed in 6.1 and 6.2. The question of how to learn
more complex, theoretically interpretable decision-theoretic
models at least partly on the basis of data is a challenge that
is being addressed in current research (see, e.g., Wittig &
Jameson, 2000).

6.4 Other Approaches

Two other largely theory-based paradigms are worth men-
tioning briefly, although they are at present somewhat less
widely used than the three paradigms discussed so far.

Techniques for Plan Recognition

In the field of artificial intelligence, many approaches have
been developed to the problem of recognizing a person’s
plans on the basis of her observed actions. For UASs, these
techniques offer the possibility that a system can interpret a
user’s actions as steps in the execution of a plan that is in-
tended to achieve some goal;

�
may then be able to assist �

in various ways, which depend in part on the function that
the adaptation is intended to serve:
1. Some systems that aim to take over routine actions from

� (2.1) do so by (a) recognizing a plan that � needs to exe-
cute repeatedly and (b) offering to execute the plan for � in
future situations. This category includes some systems for
programming by example (see, e.g., Lieberman, 2001).
2. Help systems (2.3) and tutoring systems (3.5) may point
out problems with � ’s plan or remind � of steps that need to
be taken.
3. Systems that conduct dialogs (2.4) can choose their own
dialog contributions in accordance with � ’s perceived plan.
An overview of uses of plan recognition in interactive sys-
tems is given by Carberry (2001).

The Stereotype Approach

A stereotype–based system (see, e.g., Rich, 1989) distin-
guishes a set of categories, called stereotypes, that a given

user may belong to. For example, in the AVANTI tourist
information system (2.2), each stereotype corresponds to a
group of visitors that have a certain set of capabilities and
information needs. The system provides a set of rules for as-
signing each user to one or more stereotypes on the basis of

� ’s observed behavior or other information about � (such as
self-reports). Once � has been categorized in this way,

�
can

ascribe to � properties and/or take actions that are associated
with the stereotype(s) in question.
The stereotype approach was the first inference paradigm to
be widely used for UASs (see, e.g., Rich, 1979). It is cur-
rently employed in some commercial personalization servers
(cf. Fink & Kobsa, 2000), among other systems.
The inference processes in stereotype-based systems can be
realized with a variety of computational techniques. The em-
phasis is less on sophisticated computation than on realistic
specification of the content of the stereotypes and the rules
for activating them.

7 Empirical Methods

Like any other type of interactive computing system or de-
vice, a UAS cannot be designed on the basis of first princi-
ples alone. No matter how sophisticated the techniques that
are used to realize the system, what ultimately counts is how
well the larger “system” that includes the user(s) works. So
at various points in the design process, some sort of empiri-
cal work will need to be done to ensure that the design is in
touch with reality.
The full repertoire of empirical methods in human-computer
interaction (cf. Section VI of this handbook) is in principle
applicable to user-adaptive systems. This section will focus
on four categories of empirical study that are especially rel-
evant and/or raise some important general issues when they
are applied to UASs.10 With each type of study, we will
consider what it can tell us about each of the following two
questions:
1. Accuracy of modeling: One important difference between
UASs and other interactive systems is that a UAS typically
derives testable hypotheses about each individual user � . It
is therefore often worthwhile to ask to what extent

�
’s mod-

eling of � is accurate. First, reasonable accuracy of
�

’s mod-
eling is in general a necessary (though not sufficient) condi-
tion for the success of

�
’s adaptation. Second, it can be hard

to know the implications of overall usability results if the ac-
curacy of the modeling is not known—unless the results turn
out to be conclusively positive.
2. Meeting usability challenges: The general usability chal-
lenges discussed in Section 4 constitute one reason why it is
important not to restrict empirical studies to the question of
modeling accuracy.

10More extended discussions of empirical methods for UASs are provided
by Langley and Fehling (1998), Höök (2000), and Chin (2001).



Method 
Subjects 

• Were told an experimental 
help system would track their 
activity and make guesses 
about how to help them. 

• Received the advice via a 
computer monitor. 

Experts 
• Worked in a separate room. 
• Viewed subjects’ activity via 

a monitor. 
• Conveyed advice by typing. 
• Were not informed about the 

assigned spreadsheet tasks. 

Results 
Difficulty of experts’ task 

• Experts showed some ability to identify U’s goals and needs. 
• They were often uncertain about: 
1. U’s goals − sometimes recognized with an "Aha!" reaction after a period of 

confusion; 
2. the value of providing different kinds of assistance. 

Consequences of poor advice 
• Users typically examined advice carefully. 
• Even when advice was off the mark, subjects would often become distracted by 

it and begin to experiment with the features described. 
• This behavior gave experts false confirmation of successful goal recognition. 
• Experts then gave further advice along the same lines. 

How experts improved 
• Experts became more skillful in offering advice in this situation. 
• For example, they learned to give conditional advice: 

"If you are trying to do X, then ...." 

Figure 15.25. Summary of a Wizard-of-Oz study conducted in the LUMIÈRE research project.
(Summarized on the basis of p. 258 of Horvitz et al. (1998).)

7.1 Wizard-of-Oz Studies

Systems that adapt to their users are in one methodological
respect similar to systems that make use of speech (cf. the
chapter by Lai & Yankelovich in this handbook): They at-
tempt to realize a capability that is so far possessed to the
highest degree by humans. Consequently, as with speech
interfaces, valuable information can sometimes be obtained
from a Wizard-of-Oz study: In a specially created setting,
a human takes over a part of the processing of the to-be-
developed system

�
for which humans are especially well

suited (cf. the chapters by Lai & Yankelovich, by Beaudouin-
Lafon & Mackay, and by Pew in this handbook).
The left-hand side of Figure 15.25 summarizes a typical
study of this type that was conducted in an early phase of the
development of the LUMIÈRE prototype (cf. 2.3). Whereas
the users believed they were interacting with an adaptive help
system, the help was actually provided by usability experts.

Assessing Accuracy A Wizard-of-Oz study can yield
an upper-bound estimate of the highest level of model-
ing accuracy that might be attainable given the available
information—as long as one can assume that the human
“wizards” are more competent at the type of assessment in
question than a fully automatic system is likely to be in the
foreseeable future. For example, if the expert advisors in
this particular study had shown no ability at all to recognize
the users’ goals, perhaps the entire project would have been
reconsidered.

Assessing Usability The example study brought to light a
subtle problem: the tendency of the advisors’ recommenda-
tions to become self-fulfilling prophecies. This problem is
related to the general usability challenge concerning breadth
of experience (4.5). Here, however, the limited accuracy of
the experts’ “user models” did not lead to a narrowing of
the users’ experience; instead it caused users to be led into

new areas that were presumably of no real interest to them.
Note that the experts’ behavior in this study also suggested a
way of avoiding this problem. Of course any study in which
the system is simulated by a human will reveal little about
usability issues that involve details of the appearance and
behavior of the user interface—such as the behavior of the
animated characters that personify the OFFICE ASSISTANT.

7.2 Simulations Using Data From a Nonadaptive
System

This second type of empirical study is uniquely applicable
to user-adaptive systems. It focuses entirely on the issue of
accurate modeling of � . A typical basic procedure is as fol-
lows:
Given a database of behavioral data on how a number of
users have used a nonadaptive version of a system

�
, sim-

ulate a use situation in which
�

receives parts of these data
incrementally as information about � , checking how fast and
how well

�
can acquire and apply a model of � .

A clear example of a study of this type was conducted with
the SWIFTFILE system (Segal & Kephart, 2000). The train-
ing examples with respect to each � were � ’s previously
filed messages. SWIFTFILE’s learning method was applied
to these messages just as if the system had done the learning
while � was originally filing them. The overall result of the
study was that

�
quickly and consistently attained high accu-

racy in predicting the folder that � would choose, including
the correct folder about 90% of the time in its three guesses
for each message. To be sure, this result applies only if the
messages for which � decided to create a new folder are not
counted, which is a reasonable policy.
Moreover, it is possible to evaluate many alternative variants
of

�
on the basis of the same data, whereas each user could

work with only one variant at any given time. Figure 15.26



shows the results of an analysis of this type. The results indi-
cate how often SWIFTFILE would have suggested the correct
folder, on the average, using each possible number of sugges-
tion buttons between 1 and 5. On the basis of these results,
Segal and Kephart (1999) argue that the optimal number of
buttons is 3. The results also allow us to reject the hypothesis
that

�
could do just as well by always suggesting the N most

commonly used folders.
As these examples show, precise, thorough analyses can be
performed without any investment of users’ time—and with-
out waiting for enough data from each user to accumulate,
which could take months in the case of an email system.
Assessing Accuracy In some respects, the accuracy esti-
mates that can be obtained with data from a nonadaptive sys-
tem are actually more realistic than those that could be ob-
tained in studies involving interaction with an adaptive sys-
tem: When using the real SWIFTFILE system, users might
sometimes be inclined to accept one of

�
’s folder sugges-

tions even when they would normally have chosen some
other folder: � can save time and mental effort by relying
uncritically on

�
’s classifications. In this case the predictions

of
�

would be self-fulfilling prophecies to some extent—like
some of the advice of the experts in the Wizard-of-Oz study
discussed in 7.1; and the resulting accuracy estimates would
be inflated to some unknown extent. Simulation studies can
avoid the problem of self-fulfilling prophecies. Still, they
should not be relied on exclusively, since the self-fulfilling
prophecy phenomenon is one that can arise with real system
use. The most complete picture is given by a combination of
simulation studies and studies of real use—a procedure fol-
lowed by Segal and Kephart, who also report on a study of
actual system use (Segal & Kephart, 1999, Section 6).
Assessing Usability Simulations with data from a nonadap-
tive system cannot yield information about how users actu-
ally interact with a corresponding adaptive system. There-
fore, they do not directly address the typical usability chal-
lenges discussed in Section 4. At best, results about

�
’s

modeling accuracy can form a basis for speculation about
particular aspects of

�
’s usability, such as

�
’s predictability.

7.3 Controlled Studies

The third category of study is one which is familiar from
many evaluation studies in the human-computer interaction
field: Two or more variants of a given system are compared
within a controlled setting in which users perform more or
less predefined tasks. When a UAS is involved, typically an
adaptive and a nonadaptive variant of the system are com-
pared. With the current state of the art, the key question is
often whether the adaptive version shows any advantages.
In a few years, we may see more studies in which the main
focus is on the comparative evaluation of different adaptive
variants.
The evaluation of the dialog system TOOT (2.4; Litman &
Pan, 2000) provides examples of the types of information
that can be obtained from a controlled comparison. Six

novice users conducted dialogs with an adaptive version of
TOOT that was able to change its dialog strategy in the way
illustrated in Figure 15.8, starting with the most ambitious
strategy. Six other users conducted dialogs with a nonadap-
tive version that always used the most ambitious strategy.
The central result of the study concerns the likelihood that
a given dialog will end successfully, with � hearing the
schedule information for the desired train. The likelihoods
were 65% and 23% for the adaptive and nonadaptive ver-
sions, respectively, the difference being statistically signifi-
cant. Taken by itself, this result would simply confirm that a
system that often shifts to a more long-winded, conservative
dialog strategy will have a higher likelihood of successful
dialog completion. But the dialogs conducted with the adap-
tive version were actually somewhat shorter than those with
the nonadaptive version (though the difference in length was
not statistically significant).
These results show that the adaptive version of TOOT was
clearly preferable to the nonadaptive version used in this
study. But as Litman and Pan acknowledge, it is still quite
possible that some other nonadaptive version could outper-
form the adaptive version by consistently applying a single,
more conservative dialog strategy. The general point is that it
can be difficult to demonstrate that user-adaptivity yields the
best results in a given situation. It is not enough to show that
a particular nonadaptive version of the system performs less
well than an adaptive version. The real question is whether
any single nonadaptive system could feasibly be identified in
advance that could do as well as an adaptive one.
This point is reminiscent of the lessons learned from attempts
to evaluate the relative merits of competing user interface
paradigms through empirical comparisons: No matter how
flawless the methodology may be, it is hard to generalize the
results with confidence beyond the particular system vari-
ants, tasks, and user groups that figured in the studies.

Assessing Accuracy One typical obstacle to the assessment
of modeling accuracy on the basis of data concerning system
use was already discussed in the previous subsection: the
problem of potentially self-fulfilling prophecies. The adap-
tation in TOOT illustrates a still more fundamental obstacle:
TOOT switches to a new dialog strategy when it predicts that
the current strategy will not lead to success; but once the
switch has occurred, there is no way of determining what
would actually have happened with the original strategy.

Assessing Usability Controlled studies offer an opportunity
to compare users’ subjective ratings of two or more sys-
tem variants. In addition to overall satisfaction, these rat-
ings may include assessments of the key usability variables
predictability, transparency, controllability, and unobtrusive-
ness (cf. Section 4). Generalizing such ratings to situations
of real use is problematic, however. Various factors that may
strongly influence � ’s desire for adaptive features may be ab-
sent in the controlled setting, such as: time pressure, personal
significance of the tasks performed with

�
, and distractions
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due to competing tasks and events. These contextual factors
can be taken into account in studies of actual use.

7.4 Studies of Actual System Use

The final major category of user studies is likewise familiar
from its frequent use with nonadaptive systems: Some more
or less complete version of

�
is employed by users in a more

or less realistic setting; and various objective and/or subjec-
tive variables are assessed.

Observation and Interviewing The typical field study of a
UAS involves a prototype that is used by several people
in their normal everyday setting. Sawhney and Schmandt
(2000, pp. 377–380) used this method to evaluate their NO-
MADIC RADIO, a wearable system for the context-sensitive
transmission of audio messages. They observed and inter-
viewed two experienced users of mobile phones and pagers
who tried out a prototype of the NOMADIC RADIO during
a 3-day period. Although this type of study cannot rigor-
ously test general hypotheses, the study did yield numerous
suggestions that led to design improvements. Most of these
concerned the way in which the system fit into the users’ ev-
eryday patterns of work and social interaction. One result
concerned

�
’s assignment of priorities to messages, which

it used to determine the nature and timing of notification:
The users found that explicit, distinct auditory cues to a mes-
sage’s priority were less useful than simply having a message
presented in a manner appropriate to its priority. (Note that
what is involved here is a tradeoff between transparency and
unobtrusiveness; cf. Figure 15.20). More generally, one user
found the original scheme of auditory cues to be too com-
plex to be used effectively during everyday activities and in-
teractions. As was noted above, it would be more difficult
to obtain useful results concerning questions like this from a
controlled study.

Use of Questionnaires More extensive data on actual use—
including use over a long period of time—can be obtained
through questionnaires. For example, Schaumburg (2001)
obtained data from 105 largely experienced users of the OF-

FICE ASSISTANT (cf. 2.3), each of whom spent 10–15 min-
utes filling out a questionnaire. Subjects reported both on
their actual use of the system (e.g., whether they tended to
use it when confronted with a problem) and on their subjec-
tive reactions to it (in particular, evaluations concerning key
usability variables).

Assessing Accuracy Field studies can yield information
about modeling accuracy if it is possible after the fact to
check

�
’s predictions against � ’s actual behavior—for ex-

ample, when
�

makes recommendations which � can either
accept or reject (see, e.g., the interesting analysis of this type
conducted by Mitchell et al., 1994). But as was discussed
above (7.2), it may be at least as effective to employ data
concerning the use of a nonadaptive version of the system
for this purpose.

Assessing Usability As the examples given have indicated,
studies of actual use yield especially valuable information
concerning the bottom-line question of the overall usefulness
and usability of a UAS in real situations. If the study is de-
signed accordingly, comparisons between competing system
versions can be made (see, e.g., the large-scale field trial of a
personalized medical information system described by Jones
et al., 1999). As always with empirical studies, care must be
taken in generalizing beyond the particular system versions,
user groups, and tasks employed in the study.

8 The Future of User-Adaptive Systems

This chapter has shown that adaptive interfaces, agents, and
other user-adaptive systems do not represent a smooth and
easy road to more successful human-computer interaction:
They present a complex set of usability challenges (Sec-
tion 4); they require carefully designed methods of acquir-
ing information about users (Section 5), as well as relatively
sophisticated computational techniques that are not needed
in other types of interactive system (Section 6). And even
when all of these requirements have been dealt with, it is of-
ten tricky to prove empirically that user-adaptivity has ac-
tually added any value (Section 7). It is no wonder that



some experts believe that the interests of computer users
are better served by continued progress within more familiar
paradigms of user-centered system design (see, e.g., Shnei-
derman & Maes, 1997).
On the other hand, our understanding of the complex chal-
lenges raised by user-adaptive systems has been growing
steadily, and they are now familiar and valued elements in
a number of types of system, as the survey in Sections 2 and
3 has shown.

8.1 Growing Need for User-Adaptivity

Increases in the following variables suggest that the func-
tions served by user-adaptivity will continue to grow in im-
portance:

Diversity of Users and Contexts of Use As several chapters
in this handbook make clear, computing devices are being
used by an ever-increasing variety of users in an increasing
variety of contexts. (See Section B, Interaction Issues for
Diverse Users, as well as the chapter by Stephanidis & Sa-
vidis.) It is therefore becoming harder to design a system
that will be suitable for all users and contexts without some
sort of user-adaptivity or user-controlled adaptability; and as
has been discussed at several points in this chapter (2.2, 3.2),
adaptability has its limitations.

Number and Complexity of Interactive Systems The func-
tions of user-adaptivity discussed in Section 2 partly involve
helping users to deal effectively with interactive systems and
tasks even when they are not able or willing to gain com-
plete understanding and control in each individual case. This
goal becomes increasingly important as the number—and in
some cases the complexity—of the systems that people must
deal with continues to increase—because of factors ranging
from the growth of the world-wide web to the proliferation
of miniature interactive computing devices.

Scope of Information to Be Dealt With Even when using
a single, relatively simple system, users today can often ac-
cess a much larger and more diverse set of objects of interest
than they could a few years ago—be they documents, prod-
ucts, or potential collaborators. It is therefore becoming rela-
tively more attractive to delegate some of the work of dealing
with these objects—even to a system which has an imperfect
model of the user’s requirements.

8.2 Increasing Feasibility of Successful Adaptation

As the need for user-adaptivity increases, so—fortunately—
does its feasibility, largely because of advances in the fol-
lowing areas:

Ways of Acquiring Information About Users Most of the
methods discussed in 5.2 for acquiring information about
users are becoming more powerful with advances in tech-
nology and research. They therefore offer the prospect of
substantial increases in the quality of adaptation—although
methods for ensuring users’ privacy call for equal attention.

Advances in Techniques for Learning, Inference, and Decision
In addition to the more general progress in the fields of ma-
chine learning and artificial intelligence, communities of re-
searchers have been focusing on the specific requirements of
computational techniques that support user-adaptivity. Con-
sequently, noticeable progress is being made every year in
the areas discussed in Section 6.

Attention to Empirical Methods The special empirical issues
and methods that are involved in the design and evaluation
of user-adaptive systems have been receiving increasing at-
tention from researchers, as emphasis has shifted from high
technical sophistication to ensuring that the systems enhance
the users’ experience.
The future role of user-adaptive systems will not be the result
of a sudden paradigm shift motivated by a desire to emulate
interaction among humans. It will be shaped by continuing
technical progress and increases in understanding along the
many frontiers reviewed in this chapter.
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