1

EUNITE Plenary Contribution

User-Adaptive and Other Smart Adaptive Systems: Possible Synergies

Anthony Jameson DFKI, German Research Center for AI / International University in Germany http://dfki.de/~jameson/

Plenary Session and Panel Discussion First EUNITE Symposium Tenerife, 14 December 2001

2

- 1. When should a smart adaptive system
 - a. adapt?
 - b. stay the same?
 - c. start from scratch?
- 2. How can transparency be achieved?

Contents

Introduction _____ 1 EUNITE Plenary Contribution _____ 1 _____2 Contents _____ What Is a User-Adaptive System? ______ 3 Decid How Much to Adapt _____ 4 Formulation of Question _____ 4 Example Domain _____ 5 Model and Basic Procedure _____6 Adaptation Can Increase Accuracy ______7 "No Adaptation" May Be Optimal _____ 8 Determining How Much to Adapt _____ 9 Making Adaptation Transparent _____ 10 Ways of Achieving Transparency _____ 10 Transparency vs. Accuracy? _____ 11 Simple Models and Representations _____ 12

The Eye of the Beholder _____ 13

What Is a User-Adaptive System?

What Is Adaptivity Again?

Davide Anguita, Thursday morning:

- 1. Adaptation to a changing environment
- 2. Adaptation to a similar setting without explicitly being ported to it
- 3. Adaptation to a new/unknown application

Characteristic of user-adaptive systems:

- 4. Adaptation to an individual user's ...
 - interests, knowledge, perceptual or physical impairments, location and context, ...

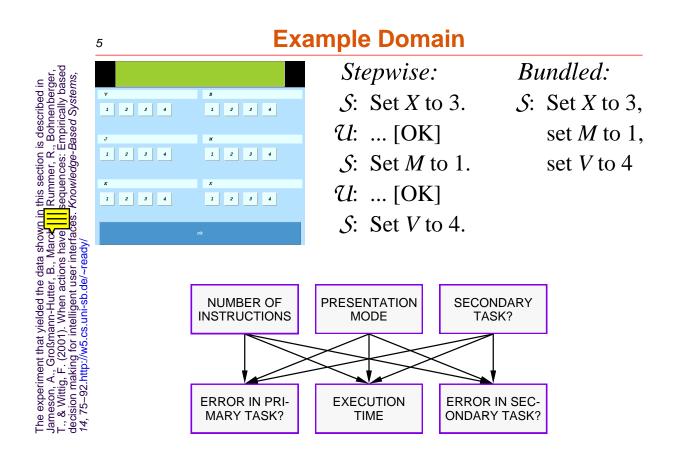
Examples from eunite 2001

- Smart Adaptive Support for Selling Computers on the Internet
 - · Tomas Kocka, Petr Berka, Tomas Kroupa
- Content Based Analysis of Email Databases Using Self-Organizing Maps
 - Andreas Nürnberger, Marcin Detyniecki

Deciding How Much to Adapt Formulation of Question

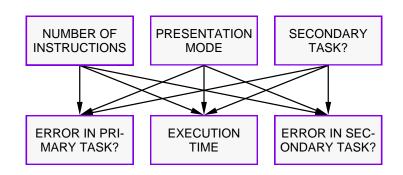
4

General formulation

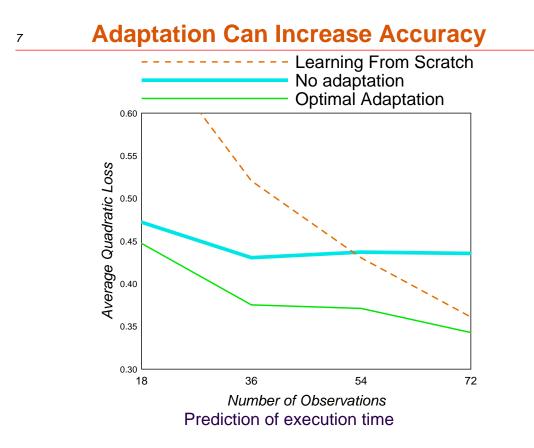

- Given a model M_A for Situation A,
 - derive an adapted model M_B for Situation B

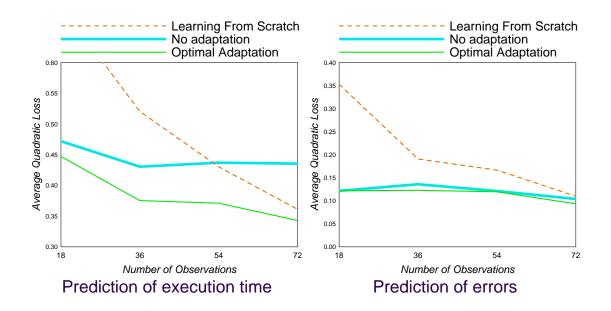
How much adaptation?

- 1. None at all: Use M_A for Situation *B* as well
- 2. Complete: Forget about M_A , learn from scratch in Situation B
- 3. Some adaptation
 - What should be the relative weights of the following?
 - Knowledge encoded in M_A
 - New data about Situation B


The learning methods discussed in this section are presented in: Jameson, A., & Wittig, F. (2001). Leveraging data at [[]]users in general in the learning of individual user models. In B. Nebel (Ed. []] loceedings of the Seventeenth International Joint Conference on Artificial Intelligence (pp. 1185–1192).San Francisco, CA: Morgan Kaufmann. http://w5.cs.uni-sb.de/~ready/

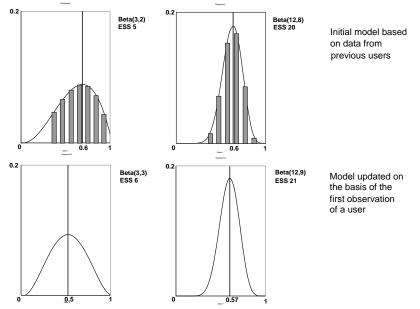
Articles and other resources concerning user-adaptive systems can be accessed via http://dfki.de/~jameson


Model and Basic Procedure



- 1. Learn a general user model with data from 31 users
- 2. Use this model as a starting point for the modeling of User #32
- 3. Adapt the model to User #32 on the basis of his/her behavior

7


"No Adaptation" May Be Optimal

8

9 Determining How Much to Adapt

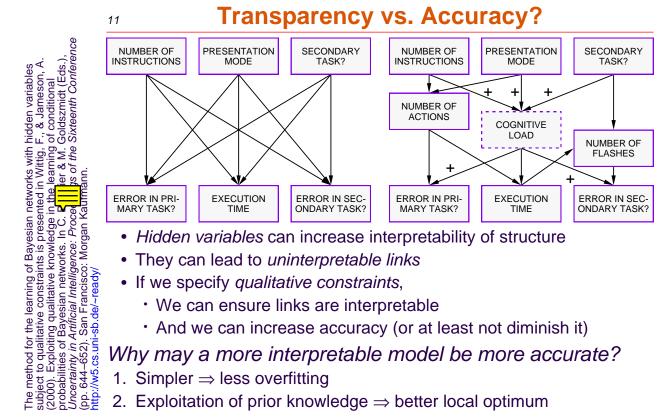
• The system can learn, on the basis of experience with previous situations, how much each part of its model should be adapted to a new situation

Making Adaptation Transparent Ways of Achieving Transparency

10

- 1. Modify learning process to enhance transparency of resulting models
 - EUNITE 2001 papers:

By Gabrys, by Nauck, and by R. P. Paiva & António Dourado Correia


- 2. Choose an inherently transparent technique
 - EUNITE 2001 Competition:

First place: Ignore summer data, temperature, and holiday status

Second place: Adaptive Logic Networks

Third place: Predict on basis of day of week

- 3. Simplify the explanation
- 4. Use powerful visualizations

- They can lead to uninterpretable links
- If we specify qualitative constraints,
 - We can ensure links are interpretable
 - And we can increase accuracy (or at least not diminish it)

Why may a more interpretable model be more accurate?

- 1. Simpler \Rightarrow less overfitting
- 2. Exploitation of prior knowledge \Rightarrow better local optimum

Simple Models and Representations

12

Recognizing Time Pressure and Cognitive Load on the Basis of Speech: An Experimental Study (Recommendation to include in Hotlist: Accept or Reject)

Authors: Christian Müller, Barbara Großmann-Hutter, Anthony Jameson, Ralf Rummer, Frank Wittig

Time: 10:30 - 11:00 AM

Hotlist Recommender Concepts (with your estimated interest levels) [2]: Modeling psychological states (+++), Context-awareness, Machine learning (--), Decision-theoretic methods (+), Empirical studies (+)

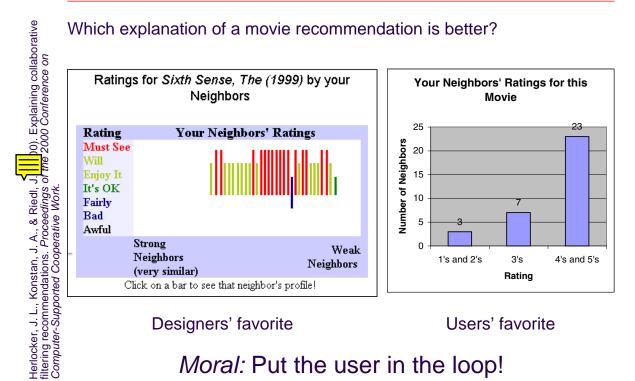
Abstract: In an experimental environment, we simulated the situation of a user who gives speech input to a system while Recommendation on a conference web site

Simple basic mechanism

Naive Bayes classifier, using only 20 features

Simplified explanation

Strength of recommendation = number of "+" minus number of "-"


Relationship

- Number of "+" or "-" reflects the log of the likelihood ratio
- of the website Issue JRL L

for the conference UM 2001: http://dfki.de/um200

When is a simplified explanation more misleading than helpful?

