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Abstract. It could be advantageous in many situations for an adaptive hyperme-
dia system to have information about the cognitive load thatthe user is currently
experiencing. A literature review of the methods proposed to assess cognitive
load reveals: (1) that pupil size seems to be one of the most promising indica-
tors of cognitive load in applied contexts and (2) that its suitability for use as an
on-line index in everyday situations has not yet been testedadequately. There-
fore, the aim of the present study was to evaluate the usefulness of the pupil size
index in such situations. To this end, pupil diameter and event-related brain po-
tentials were measured while subjects read texts of different levels of difficulty.
As had been hypothesized, more difficult texts led to lower reading speed, higher
subjective load ratings, and a reduced P300 amplitude. But text difficulty, surpris-
ingly, had no effect on pupil size. These results indicate that pupil size may not be
suitable as an index of cognitive load for adaptive hypermedia systems. Instead,
behavioral indicators such as reading speed may be more suitable.

1 Introduction

1.1 Assessing Cognitive Load for Adaptive Hypermedia Systems

There are many situations in which it would be useful for an adaptive hypermedia sys-
tem to be able to assess the current cognitive load of the user. For example, suppose that
the system notices that the current user is experiencing high cognitive load while read-
ing a particular page. The system might then (a) insert more explanations and examples,
(b) select as subsequent pages some pages that are inherently easier to read, or (c) elim-
inate unnecessary distractions (e.g., background music).Similarly, if the user’s current
cognitive load is lower than an optimal level, the system might increase its density of
information presentation.

In some cases, prediction of cognitive load may be possible on basis of the page’s
intrinsic difficulty and the user’s level of knowledgeability with respect to the subject
matter; this type of estimation is commonly made in intelligent tutoring systems. But
since such predictions cannot be entirely precise and reliable, it might be useful to have
a more direct way of assessing cognitive load. In particular, it is desirable to obtain
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load estimates which are fairly time-specific, so that the system can adapt quickly to a
change in the users state.

But assessing the cognitive load of a given user is, unfortunately, in itself a difficult
task. As a result, a range of different load assessment techniques has been proposed
(see e.g., [1, 2]) over the years. The overall aim of the work presented here was to find
the assessment method that seems best suited for building a user-adaptive system that
utilizes information about the cognitive load of the user on-line while the user is read-
ing text presented on a computer screen. In the rest of this section, the most important
classes of assessment methods are discussed briefly with regard to their appropriate-
ness as on-line measures of cognitive load. The remainder ofthe paper reports on and
discusses an experiment in which an especially promising technique—measurement of
pupil diameter—was evaluated.

1.2 Measures of Cognitive Load

Although there exist many methods for the assessment of cognitive load, each method
can be assigned to one of four classes: 1. analytic measures,2. subjective measures, 3.
performance measures, and 4. psychophysiological measures.

1. As has already been mentioned, load estimation can be based on general (i.e.
not interaction-specific) information about the system andthe user(s). For example, in-
formation about the intrinsic difficulty of a hypertext pageand about the expertise of
the user working on this page can form a basis for the prediction of the user’s load.
But as this technique, which relies heavily on prior knowledge, does not take into ac-
count information about the current interaction, unforeseeable situations and individual
peculiarities may lead to suboptimal system behavior.

2. Subjective measures involve questions which ask the userto rate the cognitive
load that she has experienced or is experiencing. For example, a scale for a self-report
of cognitive load could appear on each page of the hypertext system. But subjective
reports are distorted by memory and consciousness effects.Moreover, administering
the scale(s) after a certain page has been read would not enable the system to react to
the user’s needs while she is still reading that page. Askingthe user for a report during
the reading of a page, on the other hand, could be distracting.

3. With the third group of methods, the user’s cognitive loadis inferred from her
overt behavior, orperformance. A piece of evidence of this type might be, for instance,
the speed with which the user reads the hypertext: This technique may not reflect all of
the variations in cognitive load, and it is appropriate onlyif the activity yields a suffi-
ciently high rate of observable behavior. These disadvantages can be avoided through
the introduction of asecondary task. For example, the reader of the hypertext might be
given the task of attending to a flashing light and pushing a button when a certain pat-
tern of flashes occurs. Poor performance on the secondary task, for example, indicates
that the primary task of reading induces high cognitive load. Although this approach in
part avoids the disadvantages just mentioned, introducinga secondary task may itself
be problematic, because it may disturb the user’s main activity.

4. Finally, changes in various bodily processes and states are observed to covary
with changes in cognitive load. Therefore, monitoring of these body functions some-
times allows load to be inferred. A major advantage of psychophysiological measures is



the continuous availability of bodily data, which potentially allows load to be measured
with a high rate and high degree of sensitivity. What is more,without the introduc-
tion of an extra task, information about cognitive load is available even in situations in
which overt behavior is relatively rare. Consequently, compared with the other classes,
psychophysiological methods seem to be especially promising for on-line assessment
in adaptive hypermedia systems.

Unfortunately, with many of the existing psychophysiological measures on-line as-
sessment in an applied context is not currently feasible. Most of them require electrodes
to be attached to the body (e.g., electroencephalogram, electrocardiogram, muscle ten-
sion) or the use of equipment that entirely rules out deployment in everyday situations
(e.g., functional Magnetic Resonance Imaging, Positron Emission Tomography, mag-
netoencephalogram). Others, again, seem to be too indirectly linked to cognitive load
(e.g., blink rate, blink duration) or to be too slow for on-line measurement (e.g., hor-
mone level). In contrast, the measurement of the varying size of a person’s pupil has
none of these disadvantages. Not only is it regarded as ”one of the most sensitive work-
load measures available” [3], but it is also assumed to respond to changes in load within
several hundred milliseconds [4, 5]. Moreover, it is not necessary to attach any elec-
trodes or other equipment to the user: The measurement can beaccomplished with a
remote eye tracker, which can be placed near the computer monitor. In sum, in addi-
tion to the advantages typical of all psychophysiological indicators, the measurement
of pupil size has a combination of properties that seem uniquely well suited for the
assessment of cognitive load during the use of adaptive hypermedia systems.

Over the last 40 years, a lot of studies have demonstrated thesensitivity of a person’s
pupil size to their cognitive load in a wide variety of tasks (see, e.g., [4] for a review):
The higher the load, the bigger the pupil. In general, in these experiments at least two
tasks of different difficulty were employed; subjects had toperform the tasks while their
pupil diameter was recorded. The actual tasks used in these studies include, to name
only a few: memorizing 3 vs. 7 digits [4]; shadowing words vs.translating them [6];
reading syntactically simple vs. complex sentences [7]; and telling the truth vs. lying
[8]. These studies consistently reported larger pupil diameters during more difficult
tasks.

But since pupil size is also especially sensitive to a numberof influences not related
to cognitive load (e.g., ambient light), previous works utilizing pupil size as a cognitive
load indicator all used at least three of the following five means to control those influ-
ences: (a) constant lighting; (b) avoidance of eye movements; (c) use of nonvisual (e.g.,
acoustic) stimuli; (d) use of many similar, short tasks; and(e) evaluating only mean
values averaged across tasks and subjects.

Such strict control of the environment is not realistic in connection with an adaptive
hypermedia system; and averaging over tasks and subjects isnot suitable for diagnosing
the current load of a single person. Thus, to be truly useful in the situations of interest
to us, pupil size should be a good indicator even if some or allof the above constraints
are relaxed. To find out whether this result can be obtained, we designed and conducted
a new experiment, which is discussed in the rest of this paper.



1.3 Measures Used in the Experiment

The aim of the experiment was to evaluate the utility of pupilsize as an on-line measure
of cognitive load for an adaptive hypermedia system, not actually to employ it in such
an environment. As a result, we drew on additional techniques—some of which are
not appropriate for applied contexts (see 1.2)— to provide information about the load.
More precisely, behavioral, subjective and ERP measures were used. Whereas the first
two methods are fairly straightforward, the third one may require some explanation,
which will be given in the following paragraphs.

Processing of stimuli is accompanied by changes in brain activity, that is, activation
or inhibition of certain neuronal ensembles. This neural activity is mainly electric, and
it therefore generates electrical fields. These fields extend to regions outside the skull
and can be recorded around the head. In particular, certain environmental events (e.g.,
a sound or a flash of light) give rise to characteristic and consistent variations in the
electrical field around the head. These variations recordedfrom the scalp via electrodes
are termedevent-related brain potentials (ERPs). With regard to cognitive load mea-
surement, one particular ERP, the P300, is of special interest. In general, this potential
is elicited when a low-probability task-relevant stimulusis encountered (i.e., a stimu-
lus to which the subject is attending). Moreover, it has beenshown (see, e.g., [9]) that
the more attention (mental effort) is devoted to the task associated with the evoking
stimulus, the higher is the P300 amplitude.

The most common procedure up to now for utilizing this property of the P300 in
load assessment has been to introduce a secondary task containing stimuli that elicit the
P300. The magnitude of the evoked P300 gives information about the cognitive load in
the main task: The larger the amplitude, the smaller the load. But with this method the
subject is required to perform a secondary task, which may cause the same problems as
those associated with the secondary task measure (1.2). To circumvent these disadvan-
tages, we applied a different, relatively new technique that relies on theNovelty-P300
[10]. This special subtype of the P300 is elicited by highly unexpected, previously un-
experienced (i.e., novel) stimuli even if these stimuli arenot attended to. As a result, the
evoking stimuli do not have to be embedded in a secondary task. Instead, the Novelty-
P300 can be elicited by a sequence of stimuli which are (a) presented simultaneously
with the task of the user but (b) not relevant to that task. Regarding cognitive load, the
Novelty-P300 has the same properties as the original P300: As [11] have shown, the
Novelty-P300 is smaller for higher load. As in the approach described in [11], in our
experiment P300s were elicited by sequences of sounds (cf. Sect. 2).

2 Method

Material. As material to be read at the computer by each subject, we prepared 8 texts—
4 easy and 4 difficult—of approximately equal lengths. (Easyand difficult texts aver-
aged 342 and 339 words, respectively, in length.) Difficultywas determined through
subjective assessment and confirmed objectively in terms ofthe sources of the texts:
Easy texts were taken from schoolbooks for the fifth grade andfrom children’s books,
while difficult texts were taken from schoolbooks for the 12th grade and from philo-
sophical treatises. Text sequence was pseudopermuted via the Latin squares approach.



Given the fixed scheme ABBABAAB, where A and B denote difficulty classes, and a
fixed order of texts within each class, different sequences were constructed via rotation
of the texts of each class through the indicated positions.

Participants. Thirteen subjects, 8 female and 5 male, took part in the experiment. Their
ages ranged from 20 to 41 years, with a mean age of 25.5 years. All were native speakers
of German. They received either course credit or a monetary reward for their partici-
pation. In particular, to motivate careful reading, we paidsubjects an extra reward ofe 0.20 for each content question (see below) that they answered correctly.

Procedure. Subjects were seated facing a computer screen located at a distance of
approximately 50 cm. For control of illumination, no external light was allowed to enter
the room. The task of the participants was to read on the computer screen the texts
described above. Presentation of each text comprised five phases: First, to produce a
baseline value for pupil diameter, subjects were asked to fixate for 20 s a circle in the
middle of a screen of Xs that had been arranged like the letters in normal text. Then, a
real text was shown. Participants read the text at their own pace until they felt that they
had understood it.3 Then, four 7-alternative multiple-choice questions aboutthe content
of the text were to be answered. Finally, subjective ratingsof text difficulty and the
subject’s own willingness to be interrupted were elicited as subjective load indicators.

Pupil size and point of gaze were measured throughout the whole experiment. In
contrast, ERPs could be recorded only in the presence of eliciting tones, which were
presented only during the actual reading of the texts. Besides, reading speed and number
of correct responses were computed as behavioral measures of cognitive load.

Technology. Pupil diameter and point of gaze were recorded at 50 Hz with anASL 504
remote eye tracking system that used pan/tilt optics.

In addition to vertical and horizontal electrooculograms,EEG was registered from
62 electrodes at a sampling rate of 500 Hz.4

For checking the luminosity of each text as displayed on the computer screen, a
Gossen Lunasix F light meter was employed. Measurements indicated that luminosity
was equal for all texts and the baseline screen.

ERPs were elicited by different types of tones played in random sequences to the
subjects through speakers positioned to the left and right of the computer screen. Every
550 ms, astandard, adeviant, or anovel tone was presented for 200 ms with probabil-
ities of 0.8, 0.1, and 0.1, respectively. Standard tones were 600 Hz sinus tones, deviant
tones were 660 Hz sinus tones and novel tones were unique, nonsinus sounds (e.g., a
honking sound) that were expected to evoke the Novelty-P300. With respect to the five
means of control mentioned in 1.2, our setup led to the following relaxations: (a) use
of visual stimuli (the texts); (b) occurrence of eye movements; and (c) use of relatively
few but long tasks.

3 In fact, reading time for each text was limited to 5 minutes, but no subject exceeded this time.
4 For those interested in the details of this method: The electrodes were arranged according to

the 10–10 system. Measurements took place referenced to theleft mastoid with the forehead
serving as ground and electrode impedance below10 kΩ. Signals were filtered on-line with a
0–70 Hz bandpass and a 50 Hz notch.



3 Results

Except where otherwise stated, the analyses reported in thefollowing paragraphs are
repeated-measures analyses of variance. Where appropriate, statistical significance was
determined after correction of the degrees of freedom usingHuynh-Feldt epsilon. The
level of significance for all reported analyses was set toα = 0.05.

Behavioral Data. More difficult reading, as [7] have shown, leads not only to higher
load as indexed by the pupil but also to a smaller number of correct responses and slower
reading. Accordingly, a lower reading speed and a lower number of correct responses
for difficult texts were hypothesized for the current study.With respect to reading speed,
this hypothesis was confirmed statistically (F(5,62) = 30.08, p < 0.001, see Fig. 1a).
This was not the case for the number of correct responses. Although in our data the
answers to questions about difficult texts were less often correct than answers referring
to easy texts (see Fig. 1b), a statistical comparison using the McNemar test revealed no
significant difference (χ2

= 2.64, p > 0.1).

Fig. 1. (a) Mean reading speed in words per second and (b) mean numberof correct answers for
each of the eight texts.

Subjective Data. The subjective ratings of load consisted of judging on a 4-point
scale both the experienced difficulty (1 = “easy” – 4 = “difficult”) and how annoy-
ing an interruption during reading would have been (1 = “no problem” – 4 = “very
annoying”). As expected, difficult texts were judged to be significantly more diffi-
cult (F(7,84) = 42.58, p < 0.001, see Fig. 2a) and lower in terms of interruptibility
(F(7,84) = 27.97, p < 0.001, see Fig. 2b) than easy texts.

ERP Data. Since the Novelty-P300 is assumed to be especially pronounced over the
upper forehead and the center of the scalp (see, e.g., [10]),examination was confined to
two electrodes at these locations.5 The first step of the analysis was to visually study the

5 To be precise, these electrodes were FCz and Cz according to the 10–10-system.



Fig. 2. Part (a): Mean subjective difficulty ratings, ranging from ”easy” (= 1) to ”difficult” (= 4)
for all eight texts. Part (b): Mean annoyance-by-interruption ratings ranging from ”no problem”
(= 1) to ”very annoying” (= 4) for each of the eight texts.

electrooculogram recordings so as to reject or correct trials that showed eye movement
artifacts or blink artifacts. From the resulting trials, for each subject four average curves
(curves evoked by standard and novel sounds while reading easy or difficult texts) were
built, which, collapsed over participants, resulted in thegrand average waves displayed
in Fig. 3. P300 amplitude was then defined as the local maximumof the difference
curve—obtained by subtracting easy/difficult standard curves from the corresponding
novel curves—in the time from 164 to 274 ms after stimulus onset. In accordance with
theory, the P300 amplitude at the two electrodes was significantly larger (one-tailed)
during the reading of easy as opposed to difficult texts (F(1,12) = 3.5, p < 0.05). In
other words, the ERP method revealed a higher cognitive loadwhile reading difficult
vs. easy texts.
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Fig. 3. Grand average ERPs elicited by standard and novel sounds while reading easy and difficult
texts.



Pupil Data. As with the ERP data, prior to further analyses eye blinks hadto be identi-
fied in and eliminated from the pupil measurements. With eachblink, just before the eye
is completely closed the pupil is partly obscured. In addition, eye closure gives rise to a
change in pupil diameter because of the momentary variationin luminosity. Therefore,
a period before and after each blink had to be removed from thedata. To achieve this,
blinks were identified and 200 ms before and 1000 ms after eachblink were eliminated.

A third type of preprocessing already planned at design time(see Sect. 2) was to
relate pupil diameter assessed during reading to the baseline value measured just before
the reading of the text in question. In this way, long-term variations in pupil size that are
not related to the reading tasks can be taken into account. But in fact, baseline values
correlated strongly negatively (with a mean correlation of−0.72) with the reading pupil
diameter obtained by subtracting the baseline from the raw data. Such high negative
correlations indicate that baseline correction is not justified. Therefore, in a first step,
raw pupil data was analyzed for each subject as well as acrossall participants.

Text effects on single subject level were tested with analyses of variance for inde-
pendent measurements. Even though difficulty effects were significant for each sub-
ject, the difficult texts gave rise to larger pupil diametersfor only 6 of them, whereas
the opposite relation was observed for the remaining 7 (see Fig. 4 for an example).
Accordingly, there were no significant difficulty effects across all subjects (F(3,46) =

1.14, p > 0.3, see Fig. 5).

Fig. 4. Pupil diameter for one subject while reading an easy and a difficult text, respectively.

Because the lack of any difference in the pupil diameters wassurprising, we con-
ducted a number of additional tests, for example, considering only the first few seconds
of the text reading; and correcting pupil diameter measurements to take into account
differences in the measurements due to different points of gaze. In all analyses, there
was no hint of a consistent difference in pupil diameters between the two conditions.



Fig. 5. Mean pupil diameter for all subjects during the reading of easy and difficult texts.

4 Discussion

Of the four measures of cognitive load used in this study, three—reading speed, sub-
jective load and P300 amplitude—show a clear effect of text difficulty, indicating that
demanding texts indeed induced an increased cognitive load. But this difference in load
was not observable in pupil diameter. This result is surprising in that many previous
studies (see Sect. 1.2) had consistently reported the sensitivity of the pupil size mea-
sure. But they did so in rather strictly controlled settings, and the present study suggests
that their results do not generalize to settings that are typical of adaptive hypermedia
systems.

This unexpected result has recently been confirmed by independent research: Iqbal
et al. [12] examined pupil-size sensitivity to load variations in four different tasks, one
of which was a reading task similar to the one employed in thisexperiment. For two of
these tasks (file management on a computer and the reading of texts), no overall pupil
size difference between easy and difficult conditions couldbe found. On the other hand,
an analysis of the file management task on the subtask level revealed pupil size differ-
ences corresponding to the level of cognitive load in the subtasks. So it seems that pupil
size may differ between easy and difficult conditions only incertain periods of a task.
Whereas identification of appropriate subtasks was possible for the file management
task, it is not obvious how a reasonable decomposition couldbe achieved for read-
ing. Moreover, such a decomposition would most likely be dependent on the particular
text. Consequently, our results and those of Iqbal et al. [12] indicate that pupil-size—
although it may be sensitive to load in general—is not a suitable measure of load for
tasks that involve continuous reading.

Although this result is a negative result, we believe that itis worth drawing attention
to. There have been many reports of relationships between pupil diameter and cogni-
tive load; and more generally, there has been a lot of optimism about the prospects of
using physiological methods for the assessment of computerusers’ cognitive or affec-



tive states. If only positive results along these lines are published, a seriously distorted
impression of the potential of these methods is likely to arise. Our study illustrates that
the utility of physiological assessment methods can dependstrongly on the nature of
the task and the situation of use.

For the type of setting considered here, using behavioral indicators instead of phys-
iological measures may be more appropriate. As was mentioned above, (Sect. 3) read-
ing speed was considerably higher for easy texts. Consequently, reading speed might
be used to assess the cognitive load of a user currently studying a hypertext page. Of
course, one has to find a suitable way to assess speed. One possibility is to utilize the
eye tracker to record the time taken to read a text of known length. The advantage of this
approach would be that—as long as the user is reading—an up-to-date estimate of load
is available. This particular approach can be realized onlywhen information about the
placement of text on the screen is available. But in other situations, it may be possible
to assess reading speed on the basis of actions like button presses and mouse clicks.
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