
COMMUNICATION FAILURES IN THE SPEECH-BASED
CONTROL OF SMART HOME SYSTEMS

A. Oulasvirta*, K.-P. Engelbrecht*, A. Jameson†, S. Möller*

*Deutsche Telekom Laboratories, TU Berlin, Germany †DFKI, Germany

oulasvir@hiit.fi, klaus-peter.engelbrecht@telekom.de, jameson@dfki.de, sebastian.moeller@telekom.de

Keywords: Smart home systems, spoken dialogue sys-
tems, communication failures, error analysis.

Abstract

Despite their basic attractiveness as an interaction para-
digm for controlling intelligent environments, the design
of spoken dialog systems for this purpose raises some us-
ability challenges that require careful attention. This paper
examines closely the communication failures that can oc-
cur in the control of one particular type of intelligent envi-
ronment: a smart home system that provides control for
multiple domestic devices through a state-of-the-art
mixed-initiative spoken-dialog interface. The 24 partici-
pants completed several tasks with the INSPIRE system in
a controlled experiment, and interaction failures were
categorized with an error taxonomy that is related to more
general error taxonomies but specialized to this class of
systems. Despite efforts devoted to supporting natural,
mixed-initiative dialog and to the prevention of communi-
cation failures, over one fourth of user utterances were
problematic, often leading to stagnation or regression. The
causes and consequences of these problems are discussed,
along with their implications for the design of spoken dia-
log systems for intelligent environments.

1 Introduction

A common assumption in connection with intelligent en-
vironments is that as interaction becomes more tightly in-
terwoven with users’ environments, interfaces should be
more “natural”. From this perspective, speech-based con-
trol is viewed as an attractive interaction paradigm, espe-
cially for situations where users are doing other things at
the same time and cannot dedicate all cognitive resources
to commanding a computer; when an expressive vocabu-
lary already exists, when background noise is low, and
when it is socially acceptable to speak to a machine.
Speech-based control systems exploit the numerous ways
our languages have to refer to action, objects, and events
as they appear in time and space.

The richness of previously learned expressions and situ-
ational ways to modify them, which is considered an im-
portant argument for speech-based control, also raises a
problem: The user has to “know what to say” [17]. Dis-

cussions of this problem pervade the literature on spoken
dialog systems (SDS) ([7] and [9]), and various design
strategies have been suggested (e.g., [5]).

But simply being aware of these strategies does not enable
the designer to avoid the occurrence of user input which
cannot be handled by the system. The most effective
strategies tend to depend on the details of the individual
case, and finding the best approach in each case can in-
volve trial and error on the part of the designer.

In this paper, we aim to apply a strategy of “divide and
conquer.” We focus on a particular type of intelligent en-
vironment: the smart home; and our detailed data concern
specifically a dialog system called INSPIRE. As we ex-
plain in Section 2, the design of the system was relatively
innovative, but it was based on general principles of good
dialog design and on extensive data collection. Using a
substantial body of data collected in one study, we iden-
tify the types of interaction failures input that tend to oc-
cur in such a system, characterizing them more concretely
than would be possible in the context of a more abstract
discussion of the subject. For each type of failure, we dis-
cuss ways of preventing and responding to problematic
user inputs that seem appropriate in the context of smart
home control. We aim to show that this focus on a particu-
lar type of system makes it possible to achieve tangible
progress, despite the inherently difficult nature of the gen-
eral problem.

Because it is widely used in literature, we will use the
term error when referring to interaction failures. This us-
age by no means implies that the interaction problem is
the fault of the user – indeed it is often the fault of a sys-
tem designer who did not cater for the needs and the be-
haviour of the user.

1.1 Related Work: Communication Failures

It has long been known that communication with situated
systems such as intelligent environments raises novel
challenges, compared to other human-computer commu-
nication paradigms. Many of the design solutions that
have been worked out for GUIs are not available with
sensing systems. Bellotti et al.’s [2] analytical framework
includes questions such as that of how a user can address
the system in the first place and how he or she can be sure
that the system is attending to the user’s actions. The most

relevant question of this framework for our purposes con-
cerns what they call Action: How can the user effect a
meaningful action, control its extent and possibly specify
a target or targets for the action? The authors note that, in
the absence of a visible interface and the possibility of di-
rect pointing and manipulation, it can be difficult to spec-
ify objects and actions correctly. This paper presents a
more detailed picture of problems of this sort that arise
with a specific type of intelligent environment (smart
homes) and a particular interaction modality (speech).

One example of a study that focused on errors and recov-
ery strategies in a spoken dialogue system [3] concerned a
system for reserving conference rooms. It focused on
nonunderstanding errors – cases in which the system is
unable to assign (with some minimal degree of confi-
dence) an interpretation to an utterance of the user [3].
Two of the four levels that were identified concerned low-
level problems of speech recognition and segmenting of
the audio signal, respectively. These levels account for
about 65% of the nonunderstanding problems that were
observed with the system. In the study reported in the pre-
sent paper, to focus more on communication failures
rather than implications of speech recognition failures, we
remove these types of error from consideration by using a
Wizard-of-Oz paradigm for data collection, which elimi-
nates speech recognition errors.

Out-of-application errors were also distinguished [3], in
which the user refers to entities outside of the system’s
domain or requires functions that the system is unable to
provide – and out-of-grammar errors – in which the
meaning of the user’s utterance is acceptable but the way
in which it is formulated is not in accordance with the sys-
tem’s grammar and lexicon. These two kinds of errors are
also included in the analysis that we present below, but we
will argue that additional categories are needed to capture
essential aspects of communication failures.

At the most general level of analysis, theories of human
action and error (e.g., [11], [12], [15], and [16]) cover a
wide variety of errors in interactive systems, ranging from
the misconceptions of novices to the slips of experts. Un-
derstandably, error analysis has been most energetically
applied in connection with safety-critical systems (see,
e.g., [8]), and, to our reading, has not been utilized in the
domain of smart home control. One of the main goals of
the present paper is to adapt and apply these notions of
error to interaction with intelligent environments. Work
toward this goal has involved going through data with
various error taxonomies and sculpting a modified version
that covers a large proportion of the types of errors that
have been observed. The result is a taxonomy that cap-
tures both errors related to communication of intention
and misunderstanding of the system.

1.2 Approach

To address this problem, we made the following methodo-
logical choices:

- Realistic experimental situation. For reasons of eco-
logical validity, we took pains to stage and decorate a

laboratory as a living room that gives the look and
feel of an ordinary living room.

- State-of-the-art interface. In order the make the
evaluation relevant to contemporary trends in the de-
sign of SDS, we deployed a system that features ad-
vanced techniques like mixed-initiative interaction.

- Wizard-of-Oz study. In order to focus on other prob-
lems than those stemming from recognition errors
alone – in particular, problems for which some solu-
tions may be relatively specific to smart home sys-
tems – we used the Wizard-of-Oz methodology,
where a researcher types in the user’s spoken com-
mands for the system, thus bypassing the system’s er-
ror-prone speech recognition component.

- Three interface variations. Although we studied just
one system, we decided to have three alternative
metaphors to control it. Types of error that are found
across the three interfaces are likely to occur with
some regularity in the application domain and to be
less intertwined with the specifics of the interface.

- Task-based analysis, although some (e.g., [1]) have
noted that task-based analyses might not be appropri-
ate for the evaluation of ubiquitous systems, the iden-
tification of an error critically relies on knowing the
goal of the user and is thus best studied in a context
where those can be controlled by the experimenter.

2 The INSPIRE System

The INSPIRE smart home system has been developed in
an EU-funded IST project. It provides German language
speech control over a number of domestic appliances (TV,
video recorder, electronic program guide, three lights,
blinds, fan, answering machine) through a unified dia-
logue structure. Several design choices were made with
the goal of achieving natural interaction. The dialogue
manager allows for mixed initiative, and the system parses
also incorrectly formulated sentences and proceeds on the
basis of incomplete information.

The system has not been built for commercial use but to
experiment with unified dialog strategies and to explore
user behavior in an idealized spoken language smart home
setting. The experiment was conducted in a laboratory
decorated as a living room, the speech recognition module
being replaced by a Wizard of Oz.

2.1 Dialog Flow

The speech signal originating from the user is captured by
a microphone array and enhanced using a beamformer,
including noise reduction and echo cancellation. This en-
hanced speech signal is transferred to a commercial
speech recognizer. However, for the experiment, a human
transcriber (i.e., the wizard) replaced the recognizer.

The speech understanding module matches possible sur-
face forms (keywords) to canonical values (concepts).
This simple form of speech interpretation proved to be

sufficient for the given purpose, although it shows prob-
lems in the grammatical analysis of the user’s speech.
Such problems were reduced by augmenting the keywords
with regular expressions, but could not completely be
avoided with the present design.

To appreciate how dialog works in INSPIRE, consider the
following excerpt from our data (“S” = System, “U” = us-
er):

S: What else can I do for you?

U: Please switch on the standard lamp also.

S: I understood lamp for the device and switch
on for the task. Where is the lamp that you
want to operate?

U: What options are there?

S: Possible positions are: on the left of the
sofa, on the right of the sofa, or on the
right-hand side on the table.

U: Switch on the lamp on the left of the sofa.

The dialog between user and system is generated from ge-
neric dialog nodes linked by an application-independent
branching logic (cf. [4]). Each node is associated with a
specific piece of information to be gathered from the user.
Depending on the previous user input, the node generates
a prompt when it gets activated by the branching logic: A
general prompt asking for the respective information, an
error prompt in the case where nothing was recognized
(no input) or interpreted (no matching concepts) from the
user utterance, or a help prompt in the case where the user
seems to be lost in the dialog or explicitly asks for help.
The branching logic defines which nodes are open to col-
lect information at each point in time, acquires tasks from
the database which fit the concepts extracted from the user
utterance, asks for clarification when no matching task
exists, or asks for additional information when more than
one task matches the user’s specifications. Thus, the user
is allowed to take the initiative and provide more than one
piece of information in each utterance.

For dialog management, generic dialog nodes were de-
fined and instantiated according to the piece of informa-
tion to be gathered (cf. [14]). Using these nodes, a mixed-
initiative dialog between the user and the system is possi-
ble. The dialog manager accesses a task model in the form
of a database; this database defines the domestic devices
and the actions which are under the user’s control. The
designers of the system considered all possible ways they
could imagine addressing the devices, and these were im-
plemented in the database as task models.

Generic error recovery strategies (e.g., repeating the
prompt while adding some additional information) tend
not to be optimal for all types of errors; the provision of
recovery mechanisms that are appropriate for particular
types of errors, while requiring more design and imple-
mentation effort, seems to produce better results [3].
Therefore, in adhering to the mixed-initiative approach,
INSPIRE tries to make understandable what it has recog-
nized of the user’s command.

The dialog flow is consistent across all devices, the sys-
tem typically asking first for the device the user would
like to operate, then for its location (in case that there are
several devices of the same type), then for the action to
perform on this device, and finally for additional attributes
which may be necessary to fully specify the task.

Speech output is generated from prerecorded speech units
uttered by a male speaker, using concatenation templates.
These templates define the concatenation of full sen-
tences, of phrases, or of individual expressions or words.
The concatenation is carried out without further signal
manipulation, sometimes resulting in perceptible disfluen-
cies at the concatenation points.

2.2 Other Steps Taken to Minimize Communication
Failures in INSPIRE

In addition, there are a number of general strategies that
were applied to minimize communication failures.

1. Providing introductory material that conveys a realistic
mental model of the dialog system. The system should be a
“walk-up-and-use” SDS. Although a smart home system
is not very typical of this category of systems, in that the
main users can use it over a long period of time, it was de-
cided to built a system which does not require specific
knowledge on the part of the user, because it should be
operated by a potentially larger group of persons, with dif-
ferent abilities and with different types of “mental model”
of the system – for example, visitors in a smart home as
well as the residents themselves. For the sake of the expe-
riment, a short introductory text was given to the partici-
pants as to the capabilities of the system (mainly the de-
vices which would be operated, not which actions could
be performed). In addition to that, a short story was distri-
buted as a mind setting for the subjects.

2. Providing prompts that suggest possible inputs. In order
to provide suitable prompts where the user knows at each
point of the dialog what to say, the prompts were iterative-
ly designed so that participants’ problems were observed
with a semifunctional prototype, and their reactions were
taken into account in the prompt design. For example,
many users were not aware of the fact that they had to
specify the number related to a TV show displayed on the
screen, and the prompt was rerecorded, putting a stronger
emphasis on the word “number”.

3. Specifying the dialog structure, grammar, and vocabu-
lary in a way that corresponds to users’ expectations. In
order to improve the vocabulary and the “grammar” of the
system, initial tests were carried out at different sites
where users had to specify in textual form how they would
address the INSPIRE system. At that point in time, the
system was only roughly specified by its functionality, but
the users could not experience it. In a second step, guided
walkthroughs were carried out where a user sat next to the
experimenter and dictated what he/she would say to the
system, the experimenter corrected the utterance to make
it understandable to the system, and both observed the
reaction of the system (next prompt and potential system
action) in order to proceed with the dialog. Data collected

in these two ways was used for the definition and refine-
ment of the system’s vocabulary and grammar.

4. Supplying, where possible, nonspeech prompts and
feedback that help to suggest appropriate utterances. In
this case, the only nonspeech prompt currently used is a
list of television shows that is displayed on a screen so
that the user can specify a show by its number.

2.3 Interface Variations: Three Agent Metaphors

In addition to dialog design, we implemented three com-
munication agent metaphors to create conditions where
interface-specific errors could be distinguished from more
general types of error. Three different metaphors were im-
plemented which differ with respect to the output modali-
ty, the system voice, as well as the sound direction:

1. Multiple intelligent devices: Each of the addressed
devices is “intelligent” in that it is able to maintain a
spoken interaction with the user, using a different
voice. The sound is reproduced near the location of
the device. (But the devices are still referred to in the
third person, the system’s utterances being the same
as those used in the other two metaphors.)

2. A single visible assistant or servant which operates
the devices on behalf of the user. This assistant is vis-
ible in terms of the talking head on the screen facing
the user. The sound is reproduced by a loudspeaker
near that screen.

3. An invisible assistant, similar to the visible one, but
immaterial and invisible like a “ghost” somewhere in
the room. The sound is presented from a number of
loudspeakers at different locations of the room, gene-
rating a diffuse sound field.

Three output media could be utilized: 1) speech output
generated by concatenating pre-recorded speech units, and
played back through different loudspeakers installed in the
test room, at a sound pressure level of approx. 79 dB(A) at
the position of the user; 2) graphical output generated on a
computer screen mounted on a wall of the test room; this
type of output was used for presenting lists of items the
user could select from; 3) an animated video supporting
the speech output, showing the head and torso of a real
male person who is moving his lips, synchronized with the
activity of the speech signal (the assistant metaphor).

3 Method

A controlled laboratory experiment was carried out at the
test site of Ruhr-University Bochum consisting of a room
(5.7 x 3.6 m) with furniture typical for a living room
(couch, armchairs, a low table, shelves), and equipped
with the devices controllable by the INSPIRE system. An
additional control room hosted the experimenter, the tran-
scribing wizard replacing the speech recognizer.

3.1 Participants

Twenty-four native Germans (10 female, 14 male) partici-
pated in the test, mostly students or employees of the uni-
versity. They were 19–29 years old, with a mean of 23.7
years. Sixteen of them had previous experience with SDS,
two with speech recognition, and 14 with synthesized
speech. All participants were paid for their effort.

3.2 Materials

In order to create a meaningful setting for the experiment,
three scenarios were developed, each containing 9-11
tasks. The tasks were linked in the form of a short story
and explained in an indirect way (e.g. “You return home
from work and feel that it is quite hot in the living room.
Please use the fan to get some fresh air.”) in order to avoid
direct priming of the user’s vocabulary.

Each task addressed a specific device and action, although
freedom for own decisions is left for some tasks (e.g. se-
lecting a film). Furthermore, the tasks were not trivial but
addressed several problems of spoken language control,
like specifying location, specifying times or authenticating
oneself. The overall number and type of tasks was similar
in all scenarios, leading to three interactions of compara-
ble complexity. Tasks were presented as an entire story
before the interaction, and on paper cards for recall during
the experiment.

A user experience questionnaire to be filled in after each
scenario consisted of 37 statements grouped under 7 cate-
gories designed according to a Recommendation issued by
the International Telecommunication Union, ITU-T, for
speech-based services. (We report the exact wording of
statements and the observed relationship between usability
judgments and errors in another paper [13].)

3.3 Procedure

The experiment required three scenario-guided interac-
tions to be carried out with the INSPIRE system. It com-
prises five parts: 1) A written and oral introduction to the
system and to the purpose of the experiment; 2) an initial
questionnaire through which general information on the
test participants and their background were solicited; 3) a
short story illustrating the use of the system by a couple at
home, serving as a kind of mind-setting to the partici-
pants; 4) three scenario-guided interactions with the sys-
tem, each followed by a questionnaire on different quality
aspects; and 5) a final questionnaire where the participants
were asked to rate their general impression of the system
at the end of the experiment.

3.4 Design

Each participant carried out an interaction with each sys-
tem condition (metaphor) and each scenario. The test de-
sign was partially balanced; i.e., the order of scenarios and
conditions changed independently for each user, to reduce

as far as possible the effect of the scenario, the test condi-
tion, and the order of the dialog within the experiment.

3.5 Categorization of Errors

All tasks in the experiment involve a transformation or
manipulation of an object (digital and artifactual) in the
smart home system, achievable through a hierarchy of
commands given to the system (as defined by the relevant
dialog structure). For each task there is an optimal solu-
tion path or many paths through the dialog tree to a goal
state, and we know these as experimenters. Relevant to
our argumentation, we had control of user goals as we de-
signed the task scenarios that the participants were to ac-
complish. We here use the term “error” broadly to refer all
deviations from optimal task solution paths. By definition,
errors inhibit the progress towards the goal of the interac-
tion (partial progress, stagnation or regression).

GOAL-LEVEL

df The system does not posses the function or capability assumed in the
request. Subcategories: asking the system to control 1) objects that are not
in the system, 2) at a level of granularity not possible, 3) in a way that is not
possible due to extra-systemic restrictions.

TASK-LEVEL

df Issuing a command that is progressive in one state of the dialogue, but
not in the current one. Subcategories: 1) progressive command valid in a
future state in the optimal solution path, 2) unprogressive command valid in
a previous state.

COMMAND-LEVEL

df Issuing a command that would be valid if one word was changed to its
synonym or the grammatical order of words was changed, without changing
the meaning of the utterance. Subcategories: 1) word (verb, noun, adjec-
tive, adverbial) poor phrasing error, 2) grammatical construction error.

CONCEPT-LEVEL

df Issuing a command that would be valid if the system represented the
world in a different way. It is possible to imagine another kind of mod-
el/categorization of the world in which this utterance would not constitute an
error. Subcategories: referring incorrectly to 1) time, 2) space, or 3) attribute
of an object.

OTHER

df All other items recognizable as errors. Subcategories:

1. No input error =df Failing to issue a command during the timeout inter-
val in which the system expects it to be issued.

2. Common ground error =df Issuing a command that refers to outcomes
of previous states (e.g., “Please switch on the other lamp”)

3. Wizard error =df The wizard typed the user’s command incorrectly, or
there was a problem with the computer.

4. (Other)

Table 1: Error categories and their definitions

For the errors, a new taxonomy of user errors custom-
tailored for a SDS was constructed, making a distinction
among 1) goal-level (i.e., misunderstanding the capabili-
ties of the system), 2) task-level (i.e., not understanding
how to reach the goal in interaction with the system), 3)
command-level (i.e., vocabulary and grammar errors), and
4) conceptual errors (i.e., referring to the world in a way
that is not understood by the system).

The unit of analysis for spotting errors is one exchange of
information between the system and the user. For any sys-
tem prompt, there is always at least one user response that
lies on the optimal solution path. Because an error can af-
fect only part of the information the user tries to convey to
the system, one utterance can contain more than one error.

In making interpretations of these kinds of errors, the ca-
tegorization primarily deals with overt behavior, the user
utterance, the task given to the user which is known to re-
searchers, and the optimal path we also know as develop-
ers of the system. Errors such as goal-level errors can be
recognized by comparisons of these three. Table 1
presents the categorization and typical subcategories dis-
tinguished among.

The error categorization is somewhat similar to more gen-
eral conceptual frameworks proposed for describing HCI.
However, the definitions and subcategories have arisen
bottom-up and they have been optimized for a smart home
environment controlled via a mainly speech-based interac-
tion. It remains to be shown that a similar categorization
can be applied to other intelligent environments, involving
other concepts than “devices” and “actions”, and poten-
tially other interaction modalities. For non-speech-based
systems, at least the command-level errors (vocabulary
and grammar) will have to be adapted. Initial analyses de-
scribed in [13] show that the error frequencies are corre-
lated with user ratings of system quality; thus, the number
and nature of errors coincides with users’ negative percep-
tion of the system.

3.6 Consequences of Errors

We were also interested in the consequences of errors, and
the fact that we know the task and the dialog structure
gave us an easy operationalization for this:

1. Stagnation. The system takes the user to a prompt that
is as close to the task goal as the previous prompt,
i.e., the goal can still be reached with as many steps
as before. Two special cases of this are called Repeti-
tion and Rephrasing: The system repeats the prompt
(word to word or just the end of it but meaning the
same thing and being pragmatically the same prompt
with same action alternatives). A third special case is
Help-prompt, in which possible utterances are pro-
posed to the user.

2. Regression. The system goes to a state that is farther
away from the task goal than the previous state; i.e.,
the user has deviated from an optimal solution path
and now has to go through at least one extra state in
order to achieve the goal. A special case of this is
called Restart: The system returns to its initial state,
losing any progress achieved in the task before the er-
ror occurred.

3. Partial Progress. The system goes to a state which is
closer to the task goal, but not all the information in
the utterance is processed (thus the term partial).

3.7 Coding Procedure

Several initial sessions were held for the definition of the
error categories. After agreeing on the general scheme
presented in Table 1, one of the authors started to code the
whole data set. Five calibration sessions were held alto-
gether in refining the categories when problematic in-

stances appeared. After each change, the category in ques-
tion was recoded in the data to ensure reliability of coding.

The data of one participant could not be analyzed because
of technical problems. This resulted in the final data set
consisting of 2343 exchanges, which was coded in its enti-
rety.

3.8 Reliability

To assess the reliability of the taxonomy, an outside coder
was hired to code 300 exchanges randomly sampled from
the data. She was trained to use the coding scheme, and
several examples were provided that were not part of the
to-be-coded sample. Overall, we were satisfied with the
reliability for the error categorization.

In calculating an inter-coder reliability measure between
the first and the second coder, we found that all four cate-
gories show Cohen’s Kappa of over .60, which is consi-
dered to be an appropriate threshold for claiming substan-
tial inter-rater agreement (e.g., [10]). Nevertheless, there
were subtler difficulties within categories that had only
few data points. For example, Time and Space subcatego-
ries were much less reliable than the Attribute subcategory
in concept-level errors. Generally, the Consequence cate-
gory showed poorer agreement (Kappa falling in the range
.19-.58) than error categories. Because of the poorer
agreement for the consequence categories, we sustain
from deeper analyses than reporting them per error cate-
gories (Table 2).

4 Quantitative Results

The users were 99.2% successful in accomplishing the
tasks given in the scenarios. On average, 35 system–user
exchanges were needed to accomplish a whole scenario
(SD 6.36). This corresponds to an average of between 3
and 4 commands per task, which seems to be reasonable
considering that several pieces of information have to be
provided for each task. A user utterance had on average
3.0 words, whereas an utterance by the system had 16.6
words on average, reflecting its wordiness. On average, it
took 11.1 minutes to accomplish a scenario (SD 3.2 min),
each comprising of 9-11 tasks on the devices. The quick-
est user accomplished a scenario in 6.0 minutes, although
the users were told to carry out the scenarios at their own
pace, and no particular encouragement was given to be
quick.

The coding revealed that 26% of exchanges involved one
or more errors of the four types. (Note that one exchange
can contain more than one error, which is why Table 1’s

error figures add up to more than 26%.) Of all errors, 12%
goal-level errors, 18% task-level errors, 40% were com-
mand-level errors, and 22% concept-level errors. (2.4% of
utterances were categorized as “other” error/problem.)
Because of an error, dialog flow was stagnated as a conse-
quence in 49% of cases (repetition/rephrasing of prompt
or a help prompt); in 11% there was regression, and in
36% partial progress in the task was achieved despite the
error. Table 2 above presents a more accurate breakdown.

Weak to moderate correlations were found between the
number of errors in a given category and the time needed
for accomplishing a scenario. With command-level errors,
this correlation was r = 0.45; with each of the other error
categories, the correlation was lower, in the range .23 < r
< .28.

The appliances differed in terms of errors. Controlling the
TV and lights was particularly problematic, 39% of utter-
ances for both appliances contained one or more errors.
Program guide and VCR involved 31% and 24% errors,
respectively, whereas answering machine (21%), fan
(15%), and blinds (13%) had notably fewer errors.

Supporting the idea that error categories are general, there
were no clearly significant differences in the four catego-
ries between the three interface conditions (“agent meta-
phors”). Therefore, we collapsed the data across the three
interface conditions for the subsequent analyses.

5 Results Concerning Particular Error Types

Against the background of the quantitative analyses pre-
sented above, we will now discuss in turn each of the
types of error distinguished in Table 1. We will refer back
briefly to some of the relevant general properties of IN-
SPIRE, but we will focus on measures that are specifically
relevant to the type of error in question.

- Why did errors of this type occur with INSPIRE de-
spite the measures taken to minimize them?

- What improvements to the design of INSPIRE are
suggested by this analysis that might (further) reduce
the incidence of this type of error?

5.1 Goal-Level Errors

Goal-level errors were found less frequently (as 12% of all
errors) than other error types. Note that, since the tasks
had been invented by a researcher familiar with the sys-
tem, all of the high-level goals instructed to the users were
basically achievable. We therefore do not have the sort of
example that can arise when a novice user of a smart

 Consequence for dialogue flow

Error category % of all
exchanges

Regression Repeating/
rephrasing

Help prompt Partial
progress

Mixed/None

Goal-level 4.0 7% 21% 7% 57% 8%
Task-level 5.9 11% 28% 12% 34% 15%

Command-level 12.8 7% 22% 31% 39% 1%
Concept-level 7.1 10% 19% 29% 35% 7%

Other 2.4 N/A N/A N/A N/A N/A

Table 2: Distribution of error types per exchange and a breakdown of consequences to dialogue flow.

home system thinks of high-level goals that are outside of
the system’s scope. Still, the user had some freedom of
choice in terms of how she chose a method for goal
achievement that consisted of subgoals; it is on this level
of subgoals that goal-level errors occurred.

These errors consisted almost entirely (96%) of what we
call control mismatch errors. One subtype involves mis-
matches between the content of the command and the ca-
pabilities of the INSPIRE dialog manager. A typical (and
rather frequent) example involves commands that involve
two of the three lamps (e.g., “Please switch on two
lamps“). In fact, manipulating two lamps requires two
separate commands; but this fact is not easy for the user to
guess, because in fact it is possible to operate all (in this
case, three) lamps in the room with one command (e.g.,
“Switch on all of the lamps”).

In fact, this latter type of command is an example of one
way in which the designers of INSPIRE tried to avoid con-
trol mismatch errors: by supporting commands that users
seemed likely to desire and expect – in particular, those
that were observed during the early data collection efforts.
As this example shows, an attempt to accommodate one
user expectation can prevent one type of error but at the
same time lead to other errors that might not have oc-
curred otherwise, by raising expectations about what the
system can understand. In this sense, a smart home system
that tries to accommodate more and more user expecta-
tions is like a person trying to catch up with his shadow.

Accordingly, one approach to avoiding this type of error is
to keep the set of possible subgoals simple and easily
learnable – for example, by enforcing the presumably
easy-to-learn principle that each command must refer to a
single object.

Another type of control mismatch involves commands that
request an operation on a device that is not in fact availa-
ble for that device. For example, one of the three lamps
did not have a dimming function. Understandably, some
users gave commands to have this lamp dimmed. Avoid-
ing this type of error by informing the user in advance via
speech about which operations were possible for each in-
dividual device would be likely to be tedious. A strategy
applied in GUIs would be to ensure that the appearance of
the devices themselves was such that even a user who was
controlling a device remotely via speech could see what
operations were supported – either on the basis of the de-
vice’s physical form or on the basis of labels. But this
strategy would tend to conflict with aesthetic requirements
in a smart home, and it would be infeasible for complex
devices such as TVs with electronic program guides.

It seems inevitable that, even with the implementation of
strategies such as those just discussed, control mismatch
errors involving device functionality will occur with some
regularity in smart home systems, except perhaps with us-
ers who are quite familiar with the specific system (e.g.,
the residents in the home, as opposed to guests). There-
fore, appropriate error handling is important. The general
style of response of INSPIRE to this type of error – essen-
tially, informing the user that the requested operation is

not possible – does not appear especially problematic in
the context of smart home operation.

5.2 Task-Level Errors

This category refers to errors that involve executing a va-
lid command at an inappropriate point in the dialog flow.
In other words, the user has a valid (sub)goal but does not
know at what point(s) she can take the action in order to
achieve it, given the dialog structure of the system. In
72% of these cases, the user “jumped the gun”, supplying
some information at a point at which the system was not
yet expecting it, as in the following example:

S: I understood movie as TV show type. Your
choice leaves several possibilities. Please
name the number of a title in the list on the
screen.

U: One, and signal the beginning.

Here, the user supplements a valid response (“One”) with
a command that the system is not expecting at this point in
the dialog and can therefore not handle.

The design of INSPIRE actually aimed to avoid this type
of problem with its mixed-initiative approach, which gen-
erally allows the user to give commands independently of
the system’s prompt. Therefore, even if the user changes
her mind suddenly and gives a command that is unrelated
to the preceding context, INSPIRE will usually be able to
handle the command. One reason why errors of the type
just illustrated nonetheless occurred is that this policy was
not implemented with complete consistency: In a few di-
alog states, the system does accept only a limited number
of possible inputs. A corresponding remedy would be to
eliminate these exceptions as far as possible – in the
present example, by having the system first recognize the
number specified by the user and then treat the rest of the
input as a separate command. On the other hand, complete
input flexibility of this sort is much harder to realize suc-
cessfully in terms of natural language processing and
speech recognition (the latter of which did not play a role
in our study, because of the Wizard-of-Oz design), than
the processing of a limited range of inputs in each state.
Once again, we have a case where the provision of some
desirable dialog features tends to create an expectation
that the system cannot consistently fulfill.

5.3 Concept-Level Errors

Time-related errors (11% of conceptual errors) occurred
in two different ways. First, some users categorized time
differently than the system, for example following the
clock instead of using terms like morning and evening.
The second type of “error” (actually due to a system limi-
tation) is to refer implicitly to the current time, which the
system cannot understand because it is not aware of the
current time. For example, users asked the system to start
recording “now” or to record a show that “just started”.
However, referring to the current date (“today”, “tomor-
row”) works, which might be confusing. In this context it

might be noted that users never specified a day using date,
but always used the relative terms.

Here again, the problem can be seen as one of inconsis-
tency on the part of the system: It supports natural, intui-
tive temporal expressions in some cases but not in others.
In contrast to the examples of inconsistency discussed
above, where total consistency would be hard to achieve,
this appears to be a case where good coverage could be
attained with reasonable effort, including giving the sys-
tem a concept of the current time and including all of the
frequently occurring expressions in the vocabulary.

Space- and place-related errors (35% of conceptual er-
rors) are a more complex issue, since spatial expressions
can take various forms and refer to various objects, in-
cluding the user (“behind me”) or other devices in the
room (“on the table”). Some users referred to the standard
lamp as the “lamp on the bottom”, which the system did
not understand. Furthermore, users occasionally under-
specified the location, meaning that they uttered a phrase
which described the location of two lamps at the same
time (e.g., “The one on the right”, while there were two
lamps to the right of the user). The system’s response is to
list possible unambiguous formulations (e.g., “Possible
positions are: ‘to the left of the couch’, ‘to the right of the
couch’, and ‘to the right, on the table’”). Given the diffi-
culty for the system of understanding all possible forms of
spatial description, this error-handling strategy may
represent the best solution to the problem: It allows the
user to achieve her goals without excessive delay, at the
same time learning how to identify the objects so that her
next attempt can be successful right away.

Finally, the rest of the conceptual errors (54%) were
attribute type errors. Here is a typical example, involving
the labels of categories of movies:

S: I understood TV for the device, show for
the task, today for the day, evening for the
time and record for the TV show action. What
type of program would you like to watch?

U: Please give me an overview of the programs.

S: What type of program would you like to
watch?

U: Science fiction.

S: Types of program are: movies, documenta-
ries, series, news or shows.

U: Movies.

The designers chose not to list the possible “types of pro-
gram” in the prompt to avoid tedium for frequent users;
and in fact, as this example shows, the consequences of an
incorrect guess by a less experienced user are not serious,
because of the system’s error recovery method. Some er-
rors of this sort could be avoided through the strategy of
tapering [5][17], in which longer, explicit prompts are
used for inexperienced users and gradually replaced by
shorter prompts that presuppose familiarity with the poss-
ible inputs. To be sure, any strategy that involves adapta-
tion to individual users presupposes that the system can
identify each user and keep track of the interaction with

him or her over time – a requirement that may not be easy
to fulfill in all smart home systems.

A more interesting example where it seems desirable to
treat less and more experienced users differently concerns
errors in which a user refers to a TV show by name in-
stead of (as is required by INSPIRE) by number: This er-
ror hardly ever occurs in cases where the system explicitly
asks the user to choose a show by number from a list dis-
played on the screen. (The system prompt in this case was
in fact adapted on the basis of early tests to emphasize the
need to specify a number.) But the error does occur in re-
sponse to open system prompts such as “What can I do for
you?”. More generally, the use of such open prompts,
while advantageous especially for the expert user, can se-
duce the less experienced user into making some errors
that would be prevented by the carefully crafted prompts
that are available elsewhere in the system.

5.4 Command-Level Errors

Errors in this category concern discrepancies between the
words and grammatical constructs used by users and those
understood by the system. Of these command-level errors,
38% involved nouns and 26% involved verbs. An example
involving a grammatical construction concerns the com-
mand “I would have liked to check my messages on the
answering machine” given by one user, using a construc-
tion which is fairly common in spoken German in the
sense of “I would like to check my messages” but which
was not understood by the system.

During the development of INSPIRE, considerable effort
was made to align the system’s vocabulary with the voca-
bulary likely to be used by users, so that errors due to vo-
cabulary discrepancies would be minimized: Extensive
data collection was done at different sites and with differ-
ent user groups. Also, the guideline was applied that the
words used by the system should be ones that the system
itself can understand when they are used by a user (cf.
[7]).

Although future versions of INSPIRE will benefit from the
addition of synonyms collected in this study, some voca-
bulary-related problems that involve multiple meanings of
a word will remain. For example, the German term Nach-
richten (“news”) is problematic, because the same word
can also occur with the answering machine (for “messag-
es”). Another word with more than one meeting is Licht
(“light”), which can mean either “lamp” or “brightness”.
Reliance on context for the disambiguation of such words
partly conflicts with the goal of allowing users flexibility
in what they can say at any time.

For this reason, for example, the designers introduced the
term Fernsehnachrichten (“TV news”), which is rarely
used in spoken German. Predictably, it took the users time
to catch on to this unusual term. In such cases, an error
recovery strategy like that of INSPIRE, which involves the
identification of the problematic word and the provision of
possible substitutes (either directly in the system prompt
or via the help system) may be the best available solution,
in that it minimizes the consequences of such errors and

allows users to learn the necessary words and expressions
over time.

6 Conclusions

The preceding sections have yielded a number of ideas
about how communication failures with the speech-based
control of a smart home system can be minimized. Most
of the points made can be generalized to some extent to
the speech-based control of other ubiquitous computing
systems and/or even to spoken dialog systems in general.
Still, the analysis illustrates the usefulness of the strategy
of focusing on one particular type of system: There is no
“silver bullet” that can lead to great progress in dealing
with the long-familiar and largely inherent communication
problems associated with SDS, but as we have seen, when
we focus on a particular type of problem in a particular
type of system, specifically applicable solutions can often
be identified.

In some cases, the results reported above make it clear that
the design of the INSPIRE was suboptimal and that the
specific problem in question is not likely to appear to the
same degree in other, comparable systems. Even in these
cases, we believe that the analysis of the problems en-
countered with INSPIRE can be instructive to designers:
the same problems can appear in more subtle forms that
are harder to recognize, and the same solutions are worth
considering.

Acknowledgements

This study was supported by the EC-funded IST project
INSPIRE (IST-2001-32746) and by the MeMo project
funded by Deutsche Telekom AG. The authors would like
to thank all colleagues who supported the research.

References

[1] G. Abowd, E. Mynatt, E. Charting past, present, and
future research in ubiquitous computing, ACM Trans-
actions on Computer-Human Interaction, Vol.7, No.
1, pp. 29–58, 2000.

[2] V. Bellotti, M. Back, W.K. Edwards, R .Grinter, A.
Henderson, C. Lopez. Making sense of sensing sys-
tems: Five questions for designers and researchers.
Proceedings of CHI 2002, pp. 415–422, 2002.

[3] D. Bohus, A. Rudnicky. Sorry, I didn’t catch that! ---
an investigation of non-understanding errors and re-
covery strategies. Proceedings of the SIGdial Work-
shop on Discourse and Dialogue, Lisbon, 2005.

[4] T. Bui, M. Rajman, M. Melichar. Rapid dialogue pro-
totyping methodology. Proceedings of the 7th Inter-
national Conference on Text, Speech and Dialogue,
pp. 579–586, Berlin, Germany, 2004.

[5] M.H. Cohen, J.P. Giangola, J. Balogh. Voice user in-
terface design, Addison-Wesley, Boston, MA, 2004.

[6] P.C. Constantinides, A.I. Rudnicky. Dialog Analysis
in the Carnegie Mellon Communicator. Proc. 6th Eu-

rop. Conf. on Speech Communication and Technol-
ogy (Eurospeech’99), Budapest, 1:243-246, 1999.

[7] L. Dybkjær, N.O. Bernsen. Usability issues in spoken
dialogue systems. Natural Language Engineering,
Vol.6, No.3–4, pp. 243-271, 2000.

[8] J. Galliers, A. Sutcliffe, S. Minocha. An impact
analysis method for safety-critical user interface de-
sign. ACM Transactions on Computer-Human Inter-
action, Vol.6, No.4, pp.341-369, 1999.

[9] K. Klöckner, A. Jameson. The usability of deployed
telephone dialog systems: An evaluation. Proceedings
of the 2006 IASTED International Conference on
Computational Intelligence, San Francisco, 2006.

[10] J. Landis, G. Koch. The measurement of observer
agreement for categorical data. Biometrics, Vol. 33,
pp. 159-174, 1977.

[11] D. Norman. Design rules based on analyses of human
error. Communications of the ACM, Vol. 26, pp.
254.258, 1983.

[12] D. Norman. Cognitive engineering. In D. Norman &
S. Draper (Eds.), User centered system design: New
perspectives on human-computer interaction, pp. 31-
61, Erlbaum, Hillsdale, NJ, 1986.

[13] A. Oulasvirta, K-P. Engelbrecht, A. Jameson, S.
Möller. The relationship between user errors and per-
ceived usability of a spoken dialogue system. The 2nd
ISCA/DEGA Tutorial & Research Workshop on Per-
ceptual Quality of Systems. Berlin, Germany, 4-6 Sep,
2006.

[14] M. Rajman, T. Bui, A. Rajman, F. Seydoux, A. Trut-
nev, S. Quarteroni. Assessing the usability of a dia-
logue management system designed in the framework
of a rapid dialogue prototyping methodology. Acta
Acustica united with Acustica, Vol. 90, No. 6, pp.
1096-1111, 2004.

[15] J. Reason. Human error. Cambridge, New York,
Cambridge University Press, 1990.

[16] C. Wickens, J. Hollands. Engineering psychology and
human performance. Upper Saddle River, NJ, Pren-
tice Hall, 2000.

[17] N. Yankelovich. How do users know what to say? in-
teractions, Vol 3, No.6, pp. 32-43, 1996.

