Chapter 18 Human Decision Making and Recommender Systems

Anthony Jameson, <u>Martijn C. Willemsen</u>, <u>Alexander Felfernig</u>, Marco de Gemmis, Pasquale Lops, Giovanni Semeraro, and Li Chen

18.1 Introduction and Preview

 $\begin{bmatrix} \mathbf{T}_{\mathbf{n}} \mathbf{r}_{\mathbf{n}} \mathbf{$ i Mil^{it}, i ... i Milità $\begin{array}{c} \mathsf{DFKI}, \mathbf{G}, \mathbf{r} & \mathsf{I} & \mathsf$ $\begin{array}{c} \mathbf{C} \\ \mathbf{E} \\ \mathbf{C} \\ \mathbf{$ A.E. jr. $\mathbf{f} \mathbf{G} \mathbf{r}_{1}, \mathbf{G} \mathbf{r}_{1}, \mathbf{G} \mathbf{r}_{1}, \mathbf{A} \mathbf{r}_{2}$ _____f_fr. @____! r__._. L. C. . $H_{L,I}$ $K_{L,I}$ B_{\perp} \dots $r_{L,L}$ $H_{L,I}$ $K_{L,I}$ $C_{L,L}$ 611 F. , Recommender Systems Handbook,

D I 10.1007/978-1-4899-7637-6 18

 $\begin{array}{c} \mathbf{f}_{\mathbf{r}} \left[\mathbf{f}_{\mathbf{r}} \left[\mathbf{f}_{\mathbf{r}} \left[\mathbf{f}_{\mathbf{r}} \right] \right] \left[\mathbf{f}_{\mathbf{r}} \left[\mathbf{f}_{\mathbf{r}} \right] \right] \left[\mathbf{f}_{\mathbf{r}} \left[\mathbf{f}_{\mathbf{r}} \left[\mathbf{f}_{\mathbf{r}} \right] \right] \left[\mathbf{f}_{\mathbf{r}} \left[\mathbf{f}_{\mathbf{r}} \left[\mathbf{f}_{\mathbf{r}} \right] \right] \left[\mathbf{f}_{\mathbf{r}} \left[\mathbf{f}_{\mathbf{r}} \right] \right] \left[\mathbf{f}_{\mathbf{r}} \left[\mathbf{f}_{\mathbf{r}} \left[\mathbf{f}_{\mathbf{r}} \left[\mathbf{f}_{\mathbf{r}} \left[\mathbf{f}_{\mathbf{r}} \left[\mathbf{f}_{\mathbf{r}} \right] \right] \left[\mathbf{f}_{\mathbf{r}} \left[\mathbf{f}_{\mathbf{r}} \left[\mathbf{f}_{\mathbf{r}} \right] \right] \left[\mathbf{f}_{\mathbf{r}} \left[\mathbf{f}_{\mathbf{r}} \left[\mathbf{f}_{\mathbf{r}} \left[\mathbf{f}_{\mathbf{r}} \left[\mathbf{f}_{\mathbf{r}} \left[\mathbf{f}_{\mathbf{r}} \right] \right] \left[\mathbf{f}_{\mathbf{r}} \left[\mathbf{f}_{\mathbf{r}} \left[\mathbf{f}_{\mathbf{r}} \left[\mathbf{f}_{\mathbf{r}} \left[\mathbf{f}_{\mathbf{r}} \left[\mathbf{f}_{\mathbf{r}} \right] \right] \left[\mathbf{f}_{\mathbf{r}} \left[\mathbf{f}_{\mathbf{r}$ $\mathbf{L}_{\mathbf{m}} = \mathbf{r}_{\mathbf{m}} \mathbf{$ $= \left[\frac{1}{1 + 1} + \frac{1}{1 +$ $\begin{array}{c} & \left[\begin{array}{c} \mathbf{x}_{\mathbf{n}} \cdot \mathbf{r}_{\mathbf{n}} \cdot \mathbf{r}_{\mathbf{n}}$, **r**. $1. T_{1} \dots r_{n-1} \dots r_{$. r. r. $\mathbf{F}_{\mathbf{r}} \mathbf{r}_{\mathbf{r}} = \frac{1}{2} \mathbf{\hat{\mathbf{m}}} \mathbf{r}_{\mathbf{r}} \mathbf{r}} \mathbf{r}_{\mathbf{r}} \mathbf{r}_{\mathbf{r}} \mathbf{r}_{\mathbf{r}} \mathbf{r}_{\mathbf{r}} \mathbf{r}_{\mathbf{r}} \mathbf{r}_{\mathbf{r}} \mathbf{r}_{\mathbf{r}} \mathbf{r}_{\mathbf{r}} \mathbf{r}_{\mathbf{r}} \mathbf{r}} \mathbf{r}_{\mathbf{r}} \mathbf{r}_{\mathbf{r}} \mathbf{r}_{\mathbf{r}} \mathbf{r}} \mathbf{r}_{\mathbf{r}} \mathbf$ $\frac{1}{10} \frac{1}{10} \frac$ 2. General frequencies $\mathbf{r}_{\mathbf{j}}$ is a standard frequencies of $\mathbf{r}_{\mathbf{j}}$ is a standard frequencies $\mathbf{r}_{\mathbf{j}}$ is a first frequencies of $\mathbf{r}_{\mathbf{j}}$ is a first frequency of $\underline{ }$ explanation $\underline{ }$ $\underline{ }$ } \underline{ } $\underline{ }$ $\underline{ }$ $\underline{ }$ \underline{ } $\underline{ }$ $\underline{ }$ \underline{ } $\underline{ }$ $\underline{ }$ } \underline{ } $\underline{ }$ $\underline{ }$ $\underline{ }$ } \underline{ } $\underline{ }$ $\underline{ }$ \underline{ } $\underline{ }$ } \underline{ } $\underline{ }$ $\underline{ }$ $\underline{ }$ } \underline{ } $\underline{ }$ $\underline{ }$ \underline{ } $\underline{ }$ } \underline{ } $\underline{ }$ $\underline{ }$ \underline{ } $\underline{ }$ \underline{ } $\underline{ }$ \underline{ } $\underline{ }$ } \underline{ } \underline{ } $\underline{ }$ $\underline{ }$ \underline{ } $\underline{ }$ \underline{ } \underline{ } $\underline{ }$ \underline{ } \underline{ } \underline{ } $\underline{ }$ \underline{ } \underline{ } $\underline{ }$ \underline{ } $\underline{ }$ \underline{ } \underline{ } \underline{ } \underline{ } $\underline{ }$ \underline{ } \underline{ } $\underline{ }$ \underline{ } \underline{ } \underline{ } \underline{ } \underline{ } $\underline{ }$ \underline{ } \underline{ } $\underline{ }$ \underline{ } \underline{ } \underline{ } \underline{ } $\underline{ }$ \underline{ } \underline{ } $\underline{ }$ \underline{ } $\underline{ }$ \underline{ } \underline{ } \underline{ } $\underline{ }$ \underline{ } \underline{ } \underline{ } $\underline{ }$ \underline{ } $= t_{1} t_$ $\int_{\mathbf{M}} \frac{\mathbf{r}_{1} + \mathbf{r}_{1} + \mathbf{r}_{2} + \mathbf{r}_{2} + \mathbf{r}_{1} + \mathbf{r}_{2} + \mathbf{r}_{1} + \mathbf{r}_{1}$ $T_{\mathbf{x}} = \mathbf{x}_{\mathbf{x}} \cdot \mathbf{r}_{\mathbf{x}} \mathbf{r$ $\sum_{i=1}^{n} \left[f_{i} + \sum_{i=1}^{n} f_{i} + \sum$ $\mathbf{f}_{\mathbf{n}} = \mathbf{f}_{\mathbf{n}} =$ $\int \mathbf{M} = \int \mathbf{M} \cdot \mathbf{M} \cdot \mathbf{M} \cdot \mathbf{M} \cdot \mathbf{M} = \int \mathbf{M} \cdot \mathbf$ $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$ $\mathbf{f}_{\mathbf{x}} = \mathbf{f}_{\mathbf{x}} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} = \mathbf{f}_{\mathbf{x}} \cdot \mathbf{f}_{\mathbf{x}} \cdot$

. **f.**.

 $\mathbf{A} = \mathbf{A} =$

18.2 Choice Patterns and Recommendation

 $A_{-1} = \sum_{i=1}^{n} \int f_{i} \sum_{j=1}^{n} \int f$

 ${}^{5}A = \text{ECT}_{1} = -\mathbf{r}_{1} + \mathbf{r}_{1} \mathbf{m}^{\dagger} \mathbf{r}_{1} \mathbf{m}^{\dagger} \mathbf{$

 $[\]stackrel{4}{=} r t_{1} r_{1} r_{2} r_{1} r_{2} r_{1} r_{2} r_{2} r_{1} r_{2} r_{2} r_{2} r_{1} r_{2} r_{2}$

	1.00 1.00 1
Attribute-based choice	Consequence-based choice
Conditions of applicability	Conditions of applicability
$ \begin{array}{c} \mathbf{T}_{\mathbf{x}_{1}} & \mathbf{x}_{2} & \mathbf{x}_{2} & \mathbf{x}_{2} & \mathbf{x}_{1} & \mathbf{x}_{1} & \mathbf{x}_{2} & \mathbf{x}_{1} & \mathbf{x}_{1} & \mathbf{x}_{1} & \mathbf{x}_{1$, .T.,
Typical procedure	Typical procedure
$(\dots, \dots, :) C \mathbf{r} \mathbf{f} \mathbf{f} \mathbf{r} \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{r} \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{r} \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{h} h$	$C_{1} = C_{1} + C_{2} + C_{2} + C_{1} + C_{2} + C_{2$
Experience-based choice	Socially-based choice
Conditions of applicability	Conditions of applicability
, C, _ , <u>m² · · · , m</u> <u>- ¹ · · · · · · · · · · · · · · · · · · ·</u>	$\begin{array}{c} \cdot T_{i} \cdot \mathbf{r} \dots \dots \dots f \mathbf{r}_{i} \mathbf{x}^{-1} \cdot \mathbf{r}_{i} = \mathbf{r}_{i} = \mathbf{r}_{i} = \mathbf{r}_{i} = \mathbf{r}_{i} \\ $
Typical procedure	Typical procedure
$C_{-} C_{-} C_{-$	$C_{1} = c_{1} + c_{2} + c_{3} + c_{4} + c_{5} + c_{5$

Table 18.1 $\mathbf{r}_{\mathbf{r}} = \mathbf{f}_{\mathbf{r}} + \mathbf{f$

 $\begin{array}{c} \mathbf{I}_{\mathbf{r}} = \{\mathbf{r}_{\mathbf{r}}, \mathbf{r}_{\mathbf{r}}, \mathbf{r}, \mathbf{r}_{\mathbf{r}}, \mathbf{r}_{\mathbf{r}}, \mathbf{r}, \mathbf{r$

⁶I \mathbf{r} $\mathbf{$

Table 18.1	()	
-------------------	----	--

Policy-based choice	Trial-and-error based choice
Conditions of applicability	Conditions of applicability
, C	, The second sec
Typical procedure	Typical procedure
$E_{\mathbf{r}_{1}} \mathbf{r} \mathbf{r} \mathbf{r} C_{\mathbf{r}_{1}} \mathbf{r}_{1} = \sum_{\mathbf{r}_{1} \neq \mathbf{r}_{2}} \mathbf{r}_{1} \mathbf{r}_{1} \mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{2} \mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{$	$C_{1} = C_{2} = C_{2$

 $\begin{array}{c} \mathbf{T}_{\mathbf{r}} \mathbf{r}_{\mathbf{r}} = \int_{\mathbf{M}} \mathbf{r}_{\mathbf{r}} \mathbf{r}} \mathbf{r}_{\mathbf{r}} \mathbf{r}_{\mathbf{r}} \mathbf{r}} \mathbf{r}_{\mathbf{r}} \mathbf{r}_{\mathbf{r}} \mathbf{r}} \mathbf{r}_{\mathbf{r}} \mathbf{r}_{\mathbf{r}} \mathbf{r}} \mathbf{r}_{\mathbf{r}} \mathbf{r}} \mathbf{r}_{\mathbf{r}} \mathbf{r}_{\mathbf{r}} \mathbf{r}} \mathbf{r}} \mathbf{r}_{\mathbf{r}} \mathbf{r}} \mathbf{r}} \mathbf{r}_{$

18.2.1 Attribute-Based Choice

 $\begin{array}{c} \mathbf{I}_{\mathbf{f}_{-1}} \cdots \mathbf{r}_{-1} \cdots \mathbf{r}_{-1} \cdots \mathbf{r}_{-1} \cdots \mathbf{r}_{\mathbf{h}_{-1}} \cdots \mathbf{r}_{\mathbf$

 $I = \mathbf{r}_{1} + \mathbf{r}_{1} + \mathbf{r}_{2} + \mathbf{r}_{1} + \mathbf{r}_{2} + \mathbf{r}_{1} + \mathbf{r}_{2} + \mathbf{r}_$

- 1. The fire, _____ fire, ____ fire, ____ fire, ____ for every fire, _____ for every for the formed of the formed
- 2. A find the final field of the field of t

 $\mathbf{H} [\mathbf{r}] _ \mathbf{r}_{i} \mathbf{r}$

- 2. The \mathbf{r}_{1} matrix \mathbf{r}_{2} are a set of \mathbf{r}_{2} and \mathbf{r}_{1} and \mathbf{r}_{2} are a set of \mathbf{r}_{1} and \mathbf{r}_{2} are a set of \mathbf{r}_{2} and \mathbf{r}_{2} are a
- 3. The final field of the formula o

18.2.3 Experience-Based Choice

18.2.4 Socially Based Choice

 $\begin{array}{c} \cdot \cdot \cdot \mathbf{r} & \cdot \cdot \cdot \mathbf{r} & \cdot \cdot \cdot \mathbf{r} & \cdot \cdot \mathbf{r} & \cdot \cdot \cdot \mathbf{r} & \cdot \cdot \mathbf{$

18.2.5 Policy-Based Choice

 $\mathbf{f}_{\mathbf{n}} = \mathbf{f}_{\mathbf{n}} + \mathbf{f}_{\mathbf{n}} +$

1. A \mathbf{r}_{1} and \mathbf{r}_{2} and \mathbf{r}_{2} and \mathbf{r}_{3} and \mathbf{r}_{4} and

 $[\]frac{7}{1} \sum_{i=1,\dots,n} \frac{1}{i} \sum_{i=1,\dots,n} \frac{1}$

11 \mathbf{f} : \mathbf{f} :

18.2.6 Trial-and-Error-Based Choice

 $\begin{array}{c} \mathbf{E}_{\mathbf{r}} & \cdots & \mathbf{f}_{\mathbf{r}} & \cdots & \mathbf{f}_{\mathbf{r}} & \cdots & \mathbf{r}_{\mathbf{r}} & \mathbf{r}_{\mathbf{r}$

 $\begin{array}{c} L_{n+1} \leq \mathbf{j}_{n+1} \leq \mathbf$

 $\mathbf{Tr}_{-} = t - \mathbf{rr} \mathbf{r}_{-} \mathbf{r}_$

1. r_{1} h_{1} r_{2} r_{2} r_{3} r_{4} r_{4} r

- 18 H \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D}
- 2. $\prod_{\mathbf{M},\mathbf{M}} \{\mathbf{r}_{1}, \mathbf{r}_{1}, \mathbf{r}_$

18.2.7 Combinations of Choice Patterns

The second seco

18.2.8 What Constitutes a Good Choice?

If $\mathbf{r} = \mathbf{r} = \mathbf{r}$

1. Construction for a state of the transformation for the transform

- 2. Construction is the first second second
- 3. Constructions for a set of the product of the formula of the set of the s
- 4. Construction in the second second

18.3 Choice Support Strategies and Recommendation

18.3.1 Evaluate on Behalf of the Chooser

18.3.2 Advise About Processing

 $(\mathbf{r}_{1,\mathbf{m}}, \mathbf{r}_{1,\mathbf{m}}, \mathbf{r$

18.3.3 Access Information and Experience

 $\mathbf{f}_{\mathbf{n}} = \mathbf{f}_{\mathbf{n}} = \mathbf{f}_{\mathbf{n}} + \mathbf{f}_{\mathbf{n}} = \mathbf{f}_{\mathbf{n}} + \mathbf{f}_{\mathbf{n}} +$

18.3.4 Represent the Choice Situation

 $\begin{bmatrix} \mathbf{T}_{\mathbf{x}} & \mathbf{x}_{1} & \mathbf{T}_{\mathbf{x}} & \mathbf$

 $^{{}^{8}\}mathbf{T}_{\mathbf{A}} = \sum_{\mathbf{a} \in \mathcal{A}} \left\{ \mathbf{a} \in \mathbf{A} : \left\{ \mathbf{a} \in \mathbf{A} \right\} \xrightarrow{\mathbf{b}} \left\{ \mathbf{a} \in \mathbf{A} \right\}^{2} = \left\{ \mathbf{a} \in \mathbf{A} : \left\{ \mathbf{a} \in \mathbf{A} \right\} \xrightarrow{\mathbf{b}} \left\{ \mathbf{a} \in \mathbf{A} \right\}^{2} = \left\{ \mathbf{a} \in \mathbf{A} \right\} \xrightarrow{\mathbf{b}} \left$

18.3.5 Combine and Compute

 $\begin{array}{c} \mathbf{E} & = \int_{\mathbf{T}} \int_{\mathbf$

18.3.6 Design the Domain

 $T_{\text{rescale}} = \left[\begin{array}{c} \mathbf{r} & \mathbf{r$

18.3.7 Concluding Remark on Support Strategies

18.4 Arguments and Explanations

 $\mathbf{f}_{\mathbf{r}}, \quad \mathbf{r}_{\mathbf{r}} \in [\mathbf{r}_{\mathbf{r}}, \mathbf{r}_{\mathbf{r}}] = [\mathbf{r}_{\mathbf{r}}, \mathbf{r}_{\mathbf{r}}, \mathbf{r}_{\mathbf{r}}] = [\mathbf{r}_{\mathbf{r}}, \mathbf{r}] = [$

18.4.1 Arguments

A $[\mathbf{A}_{1}] = [\mathbf{r}_{1}] = [$

 $\mathbf{f}_{\mathbf{x}} = \mathbf{f}_{\mathbf{x}} \cdot \mathbf{f}_{\mathbf{x}} \cdot$

2. The second relation $\mathbf{r} = \mathbf{r} + \mathbf{r}$ $= \frac{1}{100} + \frac{$ $\begin{array}{c} \mathbf{I} \\ \mathbf{I} \\ \mathbf{M} \\ \mathbf$ $= \frac{1}{M} \int_{\mathbf{M}} \mathbf{f}_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \right]_{\mathbf{M}} \right]_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \right]_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \right]_{\mathbf{n}} \right]_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \right]_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \right]_{\mathbf{n}} \right]_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \right]_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \right]_{\mathbf{n}} \right]_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \right]_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \right]_{\mathbf{n}} \right]_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \right]_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \right]_{\mathbf{n}} \right]_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \right]_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \right]_{\mathbf{n}} \right]_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \right]_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \right]_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \right]_{\mathbf{n}} \right]_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \right]_{\mathbf{n}} \right]_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \right]_{\mathbf{n}} \left[\mathbf{f}_{\mathbf{n}} \left[\mathbf{f}$

18.4.2 Explanations of Recommendations

 $\begin{array}{c} \mathbf{A} = \mathbf{p}_{1,\mathbf{M}}, \dots = \mathbf{r}_{n}, \mathbf{r}_{n}, \dots, \mathbf{r}_{n}, \dots,$

18.4.2.1 Type 1: Direct Support for the Assessment of the Credibility of the Recommender System

F. r. $\mathbf{f}_{\mathbf{M}}$, $\mathbf{r}_{\mathbf{T}}$, $\mathbf{f}_{\mathbf{T}}$, $\mathbf{r}_{\mathbf{T}}$, $\mathbf{f}_{\mathbf{T}}$, $\mathbf{r}_{\mathbf{T}}$, $\mathbf{f}_{\mathbf{T}}$, $\mathbf{r}_{\mathbf{T}}$, $\mathbf{f}_{\mathbf{T}}$,

 $\mathbf{r} = \begin{bmatrix} \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} \end{bmatrix} = \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} \end{bmatrix} = \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} \end{bmatrix} = \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} \end{bmatrix} = \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} \end{bmatrix} = \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} \end{bmatrix} = \mathbf{r} \end{bmatrix} = \mathbf{r} \begin{bmatrix} \mathbf{r} & \mathbf{r} \end{bmatrix} = \mathbf{r} \end{bmatrix} =$

 $^{{}^{9}}A \sim \mathfrak{r}_{1} \vee \mathfrak{r}_{2} \vee$

18.4.2.2 Type 2: An Argument Coupled with a Fidelity Claim

18.4.2.3 Type 3: An Explicit Description of the Recommender System's Processing

 $\mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}$

 $\begin{array}{c} \mathbf{x}_{1} \cdot \mathbf{x}_{2} \cdot \mathbf{x}_{1} \cdot \mathbf{x}_{1} \cdot \mathbf{x}_{2} \cdot \mathbf{x}_{1} \cdot \mathbf{x}_{2} \cdot \mathbf{x}_{1} \cdot \mathbf{x$

 $\begin{array}{c} \mathbf{H}_{1,1} = \mathbf{v}_{1,1} + \mathbf{f}_{1,2} = \mathbf{v}_{1,1} + \mathbf{v}_{1,2} + \mathbf{f}_{1,2} + \mathbf{f}_{1,2}$

18.5 "Preferences" and Ratings

 $T_{1} = f_{1} = f_{1} = f_{2} = f_{2} = f_{1} = f_{1} = f_{1} = f_{2} = f_{2$

18.5.1 What Are "Preferences"?

 $T_{\text{references}} = \mathbf{r}_{\text{references}} =$

A $\mathbf{r}_{\mathbf{n}} \cdot \mathbf{r}_{\mathbf{n}} \cdot \mathbf{r}_{\mathbf{n}}$

 $[\]begin{array}{c} {}^{10}\mathbf{I}_{\mathbf{r}} & \cdots & \mathbf{r}_{\mathbf{r}} & \mathbf{m}_{\mathbf{r}}^{(1)} \cdot \mathbf{r}_{\mathbf{r}} & \cdots & \mathbf{r}_{\mathbf{r}} & \mathbf{f}_{\mathbf{r}}^{(1)} \cdot \mathbf{r}_{\mathbf{r}}^{(1)} & \cdots & \mathbf{f}_{\mathbf{r}}^{(1)} \cdot \mathbf{r}_{\mathbf{r}}^{(1)} \cdot \mathbf{r}_{\mathbf{r}}^{(1)} & \cdots & \mathbf{f}_{\mathbf{r}}^{(1)} \cdot \mathbf{r}_{\mathbf{r}}^{(1)} \cdot \mathbf{r}_{\mathbf{r}}^{(1)} \cdot \mathbf{r}_{\mathbf{r}}^{(1)} & \cdots & \mathbf{f}_{\mathbf{r}}^{(1)} \cdot \mathbf{r}_{\mathbf{r}}^{(1)} \cdot \mathbf{r}_{\mathbf{r}}^{(1)} & \cdots & \mathbf{f}_{\mathbf{r}}^{(1)} \cdot \mathbf{r}_{\mathbf{r}}^{(1)} \cdot$

 $\begin{array}{c} \mathbf{f}_{1}(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{2}, \mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{2},$

- $\mathbf{E}_{\mathbf{x}}^{\mathsf{T}} = \mathbf{E}_{\mathbf{x}}^{\mathsf{T}} = \mathbf{E}_{\mathbf$

 $\mathbf{T}_{-} = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=$

 $\mathbf{r} = \mathbf{r} =$

\mathbf{r}_{\rightarrow} , \mathbf{r}_{\rightarrow} , \mathbf{r}_{\rightarrow} , \mathbf{r}_{\rightarrow} , \mathbf{r}_{\rightarrow}	$\mathbf{f}_{\mathbf{A}} = \mathbf{f}_{\mathbf{A}} \mathbf{f}_{\mathbf{A}} + \mathbf{f}_{\mathbf{A}} $
C	$\mathbf{C}_{\mathbf{r}} = \mathbf{m}_{\mathbf{r}} $
A., r	L. J. J
C	\mathbf{C}_{1}
E _ = r = _ = _	Aff
· · · · · · · · · · · · · · · · · · ·	$ = \underbrace{\mathbf{r}}_{\mathbf{r}} \underbrace{\mathbf{r}} $
	$ \mathbf{I}_{\underline{\mathbf{h}} ^{1}} - \dots - \mathbf{I}_{\underline{\mathbf{h}} ^{1}} - \dots - \mathbf{I}_{\underline{\mathbf{h}} ^{1}} - \dots - \mathbf{I}_{\underline{\mathbf{h}} ^{1}}$

 $\begin{array}{c} \textbf{Table 18.3} \quad \textbf{T}_{\text{const}} \quad \textbf{f}_{\text{const}} \quad \textbf{v}_{\text{const}} \quad \textbf{v}_{\text{const}} \quad \textbf{r}_{\text{const}} \quad \textbf{r}_{c$

A $\sum_{i=1}^{n} I_i$ $\mathbf{r}_{i=1}$ $\mathbf{r}_{i=1$

18.5.2.2 Implications for the Practice of Rating Elicitation

 $(f_{1}, \dots, f_{n}) = (f_{n}, \dots, f_{n}) = (f_$

- 2. $\sum_{\mathbf{r} \in \mathcal{F}_{\mathbf{r}}} \mathbf{r}_{\mathbf{r}} \cdot \mathbf$
 - $\mathbf{f}_{\mathbf{r}} = \mathbf{f}_{\mathbf{r}} =$

 - $\begin{array}{c} T_{\mathcal{L}} = \sum_{\mathbf{h}} \mathbf{r}_{\mathbf{T}} \mathbf{r}_{\mathbf{L}} = \sum_{\mathbf{h}} \mathbf{r}_{\mathbf{h}} \mathbf{r$
- - 1. I I_{MK} I_{MK

¹¹ ... 2, 77 <u>_</u> t 35 **f** \mathbf{r} t <u>_</u> t <u>_</u> \mathbf{r} <u>_ \mathbf{r} \mathbf{r} <u>_ \mathbf{r} <u>_</u> \mathbf{r} <u>_ \mathbf{r} \mathbf{r} \mathbf{r} <u>_ \mathbf{r} $\mathbf</u></u></u></u></u></u></u></u></u></u>$

18.6 Combating Choice Overload

 $\mathbf{A} = \underline{\mathbf{a}} \cdot \mathbf{a} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{a} \cdot \mathbf{a} \cdot \mathbf{b} \cdot \mathbf{c} \cdot \mathbf{c}$ $\mathbf{M}_{\mathbf{M}}^{\mathbf{L}} = \mathbf{M}_{\mathbf{M}}^{\mathbf{L}} = \mathbf{M}_{\mathbf$ $[\cdot,\mathbf{f}_{\mathbf{v}}] \sim [\cdot,\mathbf{f}_{\mathbf{v}}] \cdot \mathbf{f}_{\mathbf{v}} = f \cdot \mathbf{v}_{\mathbf{v}} \cdot \mathbf{f}_{\mathbf{v}} + [\cdot,\mathbf{f}_{\mathbf{v}}] \cdot \mathbf{f}_{\mathbf{v}} = [\cdot,\mathbf{v}_{\mathbf{v}}] \cdot \mathbf{f}_{\mathbf{v}} \cdot \mathbf{f}_{\mathbf{v}} \cdot \mathbf{f}_{\mathbf{v}} + [\cdot,\mathbf{f}_{\mathbf{v}}] \cdot \mathbf{f}_{\mathbf{v}} \cdot \mathbf{f}$ $\frac{1}{1-1} = \frac{1}{1-1} = \frac{1}$ I we have a set of the $\sum_{\mathbf{n}} \mathbf{r}_{\mathbf{n}} \mathbf{r}_{$ $\mathbf{r}_{\mathbf{n}} = \mathbf{r}_{\mathbf{n}} = \mathbf{r}_{\mathbf{n}} + \mathbf{r}_{\mathbf{n}} +$ $\mathbf{C}_{1} = \mathbf{r}_{1} + \mathbf{r}_{1} + \mathbf{r}_{2} + \mathbf{r}_{3} + \mathbf{r}_{4} + \mathbf{r}_{5} + \mathbf{r}_{5}$ $T_{\mathbf{r}} = \mathbf{r}_{\mathbf{r}} = \mathbf{f} \mathbf{r}_{\mathbf{r}} = \mathbf{f} \mathbf{r}_{\mathbf{r}} = \mathbf{r}_{\mathbf{r}} = \mathbf{f} \mathbf{r}_{\mathbf{r}} = \mathbf{$ $\mathbf{f}_{\mathbf{A}} = \mathbf{f}_{\mathbf{A}} + \mathbf{f}_{\mathbf{A}} = \mathbf{f}_{\mathbf{A}} + \mathbf{f}_{\mathbf{A}} +$ 5 \mathbf{r} \mathbf{n} \mathbf{n} in the fail of the fail of the second If we reach many terms of the reaction of the $\begin{array}{c} & & & \\ &$ $\sum_{i=1}^{n} \frac{\mathbf{r}_{i}}{\mathbf{r}_{i}} + \sum_{i=1}^{n} \frac{\mathbf{r}_{i}}{\mathbf{r}$ $\mathbf{f} \stackrel{\mathbf{M}}{\longrightarrow} \mathbf{f} \stackrel{\mathbf{M}}$ $= \mathbf{r} \cdot \mathbf{r}$ $\cdots = \mathbf{i} \cdot \mathbf{f}_{i} \cdot \mathbf{f}_{i}$ $\mathbf{f}_{\mathbf{x}} = \mathbf{f}_{\mathbf{x}} + \mathbf{f}_{\mathbf{x}} +$

 $[\]begin{array}{c} {}^{12} T_{c} & \\ {}^{$

 $\mathbf{r}_{\mathbf{M}} = \mathbf{r}_{\mathbf{M}} \mathbf{$

18.7 Supporting Trial and Error

 $\begin{array}{c} \mathbf{I}_{\mathbf{x}_{1}},\ldots,\mathbf{M}_{n} \mathbf{M}_{n} \mathbf{M}_$

 $I = \mathbf{r}_{\mathbf{x}_{1}} + \mathbf{r}_{\mathbf{y}_{1}} + \mathbf{r}_{$

 $\begin{array}{c} A = \frac{1}{1} \mathbf{M}^{\mathbf{n}} \mathbf{M}^{\mathbf{n}}$

 $= \frac{1}{2} + \frac$

- 1. $\mathbf{r} \sim \mathbf{r} \mathbf{r} \sim \mathbf{r} \sim$
 - Stable evaluation criteria: $\mathbf{T}_{\mathbf{r}}$ $\mathbf{r}_{\mathbf{r}}$ $\mathbf{r}_{\mathbf{r}}$

 $[\]begin{array}{c} {}^{13}\mathbf{T}_{2,\dots,n} \mathbf{f}_{n} \in \mathbf{f}_{n} \\ {}^{13}\mathbf{T}_{n} \cdots \mathbf{f}_{n} \in \mathbf{f}_{n} \\ {}^{13}\mathbf{T}_{n} \cdots \mathbf{f}_{n} \in \mathbf{f}_{n} \\ {}^{13}\mathbf{T}_{n} = \mathbf{f}_{n} \\ {}^{13}\mathbf{T}_{n} \\ {}^{13}\mathbf{T}_{n} = \mathbf{f}_{n} \\ {}^{13}\mathbf{T}_{n} = \mathbf{f}_{n} \\ {}^{13}\mathbf{T}_{n} = \mathbf{f}_{n} \\ {}^{13}\mathbf{T}_{n} \\ {}^{13}\mathbf{T}_{n} = \mathbf{f}_{n} \\ {}^{13}\mathbf{T}_{n} \\ {}^{13}\mathbf{$

- $\begin{array}{c} Evolving evaluation criteria: T_{A} = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{$
- 2. $\mathbf{r} = \mathbf{r} \cdot \mathbf{r}$
 - No improvement of preference model: $\mathbf{T}_{\mathbf{x}}$ $\mathbf{r}_{\mathbf{x}}$ $\mathbf{r}_{$
 - Improvement of preference model: $\mathbf{T}_{\mathbf{r}} = \mathbf{r}_{\mathbf{r}} + \mathbf{r}_{\mathbf{r$

18.7.1 Trial and Error with Stable Evaluation Criteria

and a second second second the second second and the strain of the second $\mathbf{f}_{\mathbf{M}} = \mathbf{f}_{\mathbf{M}} \mathbf$ $\begin{bmatrix} \mathbf{r} \\ \mathbf{r} \end{bmatrix}_{\mathbf{r}} \mathbf{r} \\ \begin{bmatrix} \mathbf{r} \\ \mathbf{r} \end{bmatrix}_{\mathbf{r}} \mathbf{r} \end{bmatrix}_{\mathbf{r}} \mathbf{r} \\ \begin{bmatrix} \mathbf{r} \\ \mathbf{r} \end{bmatrix}_{\mathbf{r} \end{bmatrix}_{\mathbf{r}} \mathbf{r} \\ \begin{bmatrix} \mathbf{r} \\ \mathbf{r} \end{bmatrix}_{\mathbf{r}} \mathbf{r} \end{bmatrix}_{\mathbf{r}} \mathbf{r} \\ \begin{bmatrix} \mathbf{r} \\ \mathbf{r} \end{bmatrix}_{\mathbf{r}} \mathbf{r} \end{bmatrix}_{\mathbf{r}} \mathbf{r} \end{bmatrix}_{\mathbf{r}} \mathbf{r} \end{bmatrix}_{\mathbf{r}} \mathbf{r} \\ \begin{bmatrix} \mathbf{r} \\ \mathbf{r} \end{bmatrix}_{\mathbf{r}} \mathbf{r} \end{bmatrix}_{\mathbf{r}} \mathbf{r} \end{bmatrix}_{\mathbf{r}} \mathbf{r} \end{bmatrix}_{\mathbf{r}} \mathbf{r} \end{bmatrix}_{\mathbf{r} \end{bmatrix}_{\mathbf{r}} \mathbf{r} \end{bmatrix}_{\mathbf{r}} \mathbf{r}$. I have not a set of the set of $(\mathbf{j}', \mathbf{r}_{-1} \perp t)'' \mathbf{r}_{\mathbf{r}} \mathbf{r}_{\mathbf{r}_{-1}} \mathbf{j} (\mathbf{r}_{\mathbf{r}_{-1}} + \mathbf{r}_{\mathbf{r}_{-1}} \mathbf{j}') \mathbf{r}_{\mathbf{r}_{-1}} \mathbf{j} \mathbf{r}_{\mathbf{r}_{-1}} \mathbf{r}_{\mathbf{r$ \mathcal{L} . The set $\mathbf{r}_{\mathbf{q}}$), we can be proposed as the set $\mathbf{r}_{\mathbf{q}}$. The set $\mathbf{r}_{\mathbf{q}}$ $= \mathbf{r}_{1,\mathbf{M}} \cdot \mathbf{r}_{1,\mathbf{M}} \cdot \mathbf{r}_{2,\mathbf{M}} \cdot \mathbf{r}_{1,\mathbf{M}} \cdot \mathbf{r}_{1,\mathbf{$ $= \int_{-\infty}^{\infty} \int_{-\infty}^$ $\mathbf{I} \quad \dots \quad \mathbf{I} \quad \mathbf{I} \quad \dots \quad \mathbf{I} \quad$ $= \mathbf{f} \cdot \mathbf{f}$ $\sum_{\mathbf{M}} \left(\mathbf{r}_{\mathbf{M}}, \mathbf{r}$ $\frac{1}{1} \sum_{i=1}^{m} \sum_{i=1}^$ $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$ $(\underline{f}_{1}, \underline{f}_{1}, \underline{f}_{1}, \underline{f}_{2}, \underline{$ $\mathbf{x} = \mathbf{x} + \mathbf{x} +$ **r**. **.**

 $I_{1} = \dots = I_{n} =$

18.7.2 Trial and Error with Evolving Evaluation Criteria

 $= I_{1,\mathbf{M}} \cdot \mathbf{J} = \{ \mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{3},$ $= \frac{1}{2} \sum_{i=1}^{n} \frac{$ المحالي (أن المحالي (أن المحرف الم<u>أ</u>ر الكرام كال محرف المحرف_{ا (أل} المان المحرف المحرف) $\mathbf{r}_{\mathbf{x}} \mathbf{r}_{\mathbf{x}} = \mathbf{r}_{\mathbf{x}} \mathbf{$ $\begin{bmatrix} \mathbf{M} & -\mathbf{M} & \mathbf{M} \\ -\mathbf{M} & -\mathbf{M} & \mathbf{M} \\ -\mathbf{M} & -\mathbf{M} & \mathbf{M} \\ -\mathbf{M} & \mathbf{M} & -\mathbf{M} \\ -\mathbf{M} \\ -\mathbf{M} & -\mathbf{M} \\ -\mathbf{M} \\ -\mathbf{M} & -\mathbf{M} \\ -\mathbf{M} \\ -\mathbf{M$ $= \cdots + \cdots + \frac{\mathbf{r}_{1}}{2} = \mathbf{r}_{1} = \mathbf{r}_{1} + \cdots + \mathbf{r}_{n} +$ $= \mathbf{r} = \mathbf{r} + \mathbf{r}$ $\sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \prod_{i=1}^{n} \frac{1}{2} \prod_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i$ $t_{\mathbf{x}} \cdot \mathbf{r}_{\mathbf{x}} \cdot \mathbf{f} \mathbf{r}_{\mathbf{x}} \cdot \mathbf{r}_{\mathbf{x}$ C___.26). $\mathbf{A}_{[\mathbf{m}} \mathbf{r}_{\mathbf{m}} \cdots \mathbf{r}_{\mathbf{n}} \mathbf{f}_{\mathbf{m}} \cdots \mathbf{f}_{\mathbf{m}} \mathbf{f}_{\mathbf{m}} \mathbf{f}_{\mathbf{m}} \cdots \mathbf{f}_{\mathbf{m}} \mathbf{f}_{\mathbf{m}} \cdots \mathbf{f}_{\mathbf{m}} \mathbf{f}_{\mathbf$ $C_{\mathbf{r}}^{\dagger \mathbf{m}} = C_{\mathbf{r}}^{\dagger \mathbf{m}} = \frac{1}{2} \cdot \frac{1}$ $\frac{1}{|\mathbf{M}|} = \frac{1}{|\mathbf{M}|} = \frac{1}$.r_/ - . ff .

18.8 Dealing with Potentially Distorting Influences on Choice Processes

 $\mathbf{E} = \mathbf{E} =$

 $\mathbf{f}_{\mathbf{x}} = \mathbf{f}_{\mathbf{x}} \mathbf{$

18.8.1 Context Effects

A $\neg f_{M}$ f_{M} $\neg f_{M}$ f_{M} $\neg f_{M}$ f_{M} $\neg f_{M}$ f_{M} $\neg f_{M}$ $\neg f_{M}$

 $\begin{array}{c} \underline{\mathbf{r}}_{\mathbf{n}} \cdot \mathbf{r}_{\mathbf{n}} \cdot \mathbf{r}_$

Table 18.4	$\mathbf{E} = \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e}$	
(T	$\cdots \cdots $	
···· ··	r ,	

1.00.1			
L .	Α	В	D
r, r	30. r r	20. r r.	35. i r.
D	10 GB	6 GB	9 GB
1 1 1 211			

 $A = \frac{1}{2} \cdots \int f(1 \cdots f(1 \cdots$

A matrix for the first set of the set of th

First \mathbf{r}_{i} and \mathbf{r}_{i} for \mathbf{r}_{i} for

18.8.2 Order Effects

 $\begin{array}{c} \mathbf{A}_{1}, \mathbf{v}_{1}, \mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{2}, \mathbf{r}_{1}, \mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{2}, \mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{2},$

1. The \mathbf{r}_{1} is the second seco

$= t' \cdot \cdot \cdot \mathbf{r} \cdot \mathbf{j} \mathbf{r} \cdot \mathbf{r} \cdot \cdot \mathbf{r} \cdot r$	and a second of the second	T, r, r, j
r	.f.	1 • f • t
,,,,,, _	$\mathbf{B}_{\mathbf{r}}$, $\mathbf{r}_{\mathbf{r}}$, $\mathbf{r}_{\mathbf{r}}$	

Table 18.5 E	I.	A	В	D
ni ^t s ^r statistics in the statistic statistic statistics in the statistic statistics in the statistic statistics in the statistic statistics in the statistic statistic statistics in the statistic statistic statistics in the statistics in the statistic statistics in the statistics in the statistic statistics in the statistic statistics in the statistics in the statistics in the statistics	r r	30 i r.	20. r. r.	55 i r.
	D (.	10 GB	6 GB	16 GB

 $\mathbf{f} \mathbf{r}_{\mathbf{M}} \mathbf{r}_{\mathbf{M}}$

18.8.3 Framing Effects

 $T_{i_{1}} \cdot \mathbf{r}_{i_{2}} \cdot \mathbf{r}_{i_{3}} \cdot \mathbf{r}_{i$

 $\mathbf{r}_{\mathbf{n}} = \mathbf{r}_{\mathbf{n}} + \mathbf{r}_{\mathbf{n}} +$

 $\mathbf{A}_{-1} \mathbf{f}_{1} \mathbf{f}_{1}$

18.8.4 Priming Effects

 $\begin{array}{c} T_{i_{1}} \xrightarrow{\gamma_{i_{1}}} \cdots \xrightarrow{\gamma_{i_{n}}} f(\cdot, \gamma_{i_{n}}) \xrightarrow{\gamma_{i_{n}}} \xrightarrow{\gamma_{i$

18.8.5 Defaults

1. $[\mathbf{r}_{\mathbf{M}}]_{\mathbf{M}}^{\mathbf{r}}, \mathbf{r}_{\mathbf{M}}^{\mathbf{r}}, \mathbf{r}, \mathbf{r}_{\mathbf{M}}^{\mathbf{r}}, \mathbf{r}, \mathbf{r}_{\mathbf{M}}^{\mathbf{r}},$

- $\begin{array}{c} \begin{array}{c} \begin{array}{c} T_{1} & \cdots & r_{1} & \cdots & r_{1} & \cdots & r_{n} & \cdots & r$
- $\mathbf{I}_{\mathbf{M}} \stackrel{\mathbf{M}}{\longrightarrow} \mathbf{M}_{\mathbf{M}} \stackrel{\mathbf{M}}{\longrightarrow} \mathbf{M}_{\mathbf{M}} \stackrel{\mathbf{M}}{\longrightarrow} \mathbf{H}_{\mathbf{M}} \stackrel{\mathbf{M}}{$

 $\mathbf{f}_{\mathbf{x}} = \mathbf{f}_{\mathbf{x}} + \mathbf{f}_{\mathbf{x}} +$

18.9 Recapitulation and Concluding Remarks

 $\begin{array}{c} T_{n} \quad f_{1} \left(\begin{array}{c} f_{1} \\ f_{1} \\ f_{n} \\ \end{array} \right) \left(\begin{array}{c} T_{n} \\ f_{n} \end{array} \right) \left(\begin{array}{c} T_{n} \\ f_{n} \\ \end{array} \right) \left(\begin{array}{c} T_{n} \\ f_{n} \end{array} \right) \left(\begin{array}{c} T_{n} \end{array} \right) \left(\begin{array}{c} T$

 $\mathbf{f}_{\mathbf{M}} = \mathbf{f}_{\mathbf{M}} + \mathbf{f}_{\mathbf{M}} +$ $\begin{bmatrix} \mathbf{f} & \mathbf{f} \\ \mathbf{h} & \mathbf{f} \end{bmatrix} = \begin{bmatrix} \mathbf{f} & \mathbf{h} \\ \mathbf{h} & \mathbf{f} \end{bmatrix} = \begin{bmatrix} \mathbf{f} & \mathbf{h} \\ \mathbf{h} & \mathbf{f} \end{bmatrix} = \begin{bmatrix} \mathbf{f} & \mathbf{f} \\ \mathbf{h} & \mathbf{f} \end{bmatrix} = \begin{bmatrix} \mathbf{f} & \mathbf{f} \\ \mathbf{h} & \mathbf{f} \end{bmatrix} = \begin{bmatrix} \mathbf{f} & \mathbf{f} \\ \mathbf{h} & \mathbf{f} \end{bmatrix} = \begin{bmatrix} \mathbf{f} & \mathbf{f} \\ \mathbf{h} & \mathbf{f} \end{bmatrix} = \begin{bmatrix} \mathbf{f} & \mathbf{f} \\ \mathbf{h} & \mathbf{f} \end{bmatrix} = \begin{bmatrix} \mathbf{f} & \mathbf{f} \\ \mathbf{h} & \mathbf{f} \end{bmatrix} = \begin{bmatrix} \mathbf{f} & \mathbf{f} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{f} & \mathbf{f} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{f} & \mathbf{f} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{f} & \mathbf{f} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{f} & \mathbf{f} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{f} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{f} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{f} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{f} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{f} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{f} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{f} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{f} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{f} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{f} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{f} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{f} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{f} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{f} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{f} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{f} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{f} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{f} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h}$ **f.**.

Acknowledgements
T.
r.
f.
r.
f.

References

- 1. At \mathbf{M} \mathbf $C_{1,1} = \sum_{i=1}^{n} \sum_{j=1}^{n} F_{i,j} = C_{1,j} \mathbf{r} = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=$ (2011)
- $2. \mathbf{A}_{\mathbf{A}\mathbf{K}}^{(2011)} \mathbf{I}_{\mathbf{A}\mathbf{K}}^{(1)} \mathbf{I}_{\mathbf{A}\mathbf{K}$
- (2005)
- 4. B. J_{1} , J_{2} , J_{2
- 522, 543 (2013)
- 6. B. $\prod_{i=1}^{n}$, D., $\mathbf{Gr}_{\underline{I}}$, $\prod_{i=1}^{n}$, $\prod_{i=1}^$

- $\overset{19}{\longrightarrow} :: \mathcal{H}_{\mathcal{H}} \stackrel{\mathfrak{c}}{\longrightarrow} : \mathfrak{c} \xrightarrow{\mathfrak{c}} \stackrel{\mathfrak{g}}{\longrightarrow} : \mathfrak{c} \xrightarrow{\mathfrak{g}} \stackrel{\mathfrak{g}}{\longrightarrow} : \mathfrak{g} \xrightarrow{\mathfrak{g}} \xrightarrow{\mathfrak{g}} \stackrel{\mathfrak{g}}{\longrightarrow} : \mathfrak{g} \xrightarrow{\mathfrak{g}} \stackrel{\mathfrak{g}}{\longrightarrow}$

 $^{^{14}}$ 14 14 14 14 16

- 7. B. $\mathbf{h}_{\mathbf{h}}$, D., K. $\mathbf{h}_{\mathbf{h}}$, $\mathbf{h}_{$
- 9. By \mathbf{r}_{\perp} , \therefore H = \mathbf{r}_{\perp} f = \mathbf{r}_{\perp} , \mathbf{r}_{\perp} ,
- 10. By \mathbf{r}_{i} , \dots \mathbf{H} , \mathbf{r}_{i} , \dots \mathbf{r}_{i} , \mathbf{r}_{i} , \mathbf{r}_{i} , \mathbf{r}_{i} , \mathbf{h} B r ... (2007)
- $\begin{array}{c} \mathbf{B} \mathbf{r}_{1...}^{\mathsf{T}} (2007) \\ 11. \mathbf{C}_{\neg \mathbf{m}} \mathbf{r}_{1}, \mathbf{C}_{2}, \mathbf{B}_{2}, \ldots, \mathbf{L}_{2}, \mathbf{L}_{2}, \mathbf{L}_{2}, \mathbf{L}_{2}, \mathbf{r}_{2}, \mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_$

- 14. Complete $\mathbf{G}_{1,\mathbf{M}}$, $\mathbf{G}_{1,\mathbf{M}}$, $\mathbf{F}_{1,\mathbf{f}}$, $\mathbf{f}_{1,\mathbf{f}}$, $\mathbf{A}_{1,\mathbf{L}}$, $\mathbf{G}_{1,\mathbf{f}}$, $\mathbf{G}_{2,\mathbf{f}}$, $\mathbf{G}_{1,\mathbf{f}}$, $\mathbf{G}_{2,\mathbf{f}}$, $\mathbf{G}_{2,$ (2013)
- 15. C. r., A.: \mathbf{r} \mathbf{r}
- 17. C. $J_{1,j}$, C. $\mathbf{r}_{1,j}$, A.: $J_{1,j}$, I. $\mathbf{r}_{1,j}$, I. $\mathbf{r}_{1,j}$, I. $\mathbf{r}_{1,j}$, I. $\mathbf{r}_{1,j}$, $\mathbf{r}_{1,$ **362**, 933, 942 (2007)
- 18. C ... $\mathbf{r}_{,\mathbf{j}}$., $\mathbf{A}\mathbf{r}_{,\mathbf{j}}$., \mathbf{C} : $\mathbf{A}_{\mathbf{x}}$. $\mathbf{f}_{\mathbf{x}}$... $\mathbf{r}_{\mathbf{x}}$... $\mathbf{r}_{\mathbf{x}}$... $\mathbf{r}_{\mathbf{x}}$... $\mathbf{r}_{\mathbf{x}}$... $\mathbf{A}_{\mathbf{x}}$... $\mathbf{A}_{\mathbf{x}}$... $\mathbf{f}_{\mathbf{x}}$... $\mathbf{r}_{\mathbf{x}}$... $\mathbf{r}_{\mathbf{x}}$... $\mathbf{r}_{\mathbf{x}}$... $\mathbf{A}_{\mathbf{x}}$... $\mathbf{A}_{\mathbf{x}}$... $\mathbf{f}_{\mathbf{x}}$... $\mathbf{f}_{\mathbf{$
- (2001)
- $\int \mathbf{f} \mathbf{r} = (\mathbf{r}_{1} \mathbf{r}_{1}) + (\mathbf{r}_{1} \mathbf{$
- 23. F_{\perp} , \therefore And f_{\perp} , C_{\perp} , C_{\perp} **25**(5), 603, 637 (2007)
- 24. $\mathbf{F}_{\mathbf{j}}$ $\mathbf{f}_{\mathbf{r}}$ $\mathbf{r}_{\mathbf{r}}$ $\mathbf{A}_{\mathbf{r}}$ $\mathbf{F}_{\mathbf{r}}$ $\mathbf{r}_{\mathbf{r}}$ $\mathbf{A}_{\mathbf{r}}$ $\mathbf{F}_{\mathbf{r}}$ $\mathbf{r}_{\mathbf{r}}$ $\mathbf{A}_{\mathbf{r}}$ $\mathbf{F}_{\mathbf{r}}$ $\mathbf{r}_{\mathbf{r}}$ $\mathbf{A}_{\mathbf{r}}$ $\mathbf{F}_{\mathbf{r}}$ $\mathbf{F}_{\mathbf{r}}$ $\mathbf{A}_{\mathbf{r}}$ $\mathbf{F}_{\mathbf{r}}$ $\mathbf{F}_{\mathbf{r}}$ $\mathbf{A}_{\mathbf{r}}$ $\mathbf{F}_{\mathbf{r}}$ $\mathbf{F}_{\mathbf{r}$. 283, 294. **r**. **r**. **r**, **H**. **r**. **p** (2007)
- 25. \mathbf{F}_{1} $\mathbf{f}_{1'}$, \mathbf{A}_{n} , \mathbf{G}_{1} , \mathbf{B}_{n} , \mathbf{L}_{1} , \mathbf{r}_{n} , \mathbf{G}_{n} , \mathbf{r}_{n} ,
- 847 (1991)
- $27. F_{1,2} \dots f_{1,2} \dots$ $T_ r \& Fr_ , r (2010)$

- 33. \mathbf{H}_{1} , \mathbf{K}_{1} , \mathbf{K}_{1} , \mathbf{r}_{1} , \mathbf{r}_{2} , \mathbf{r}_{1} , \mathbf{r}_{2} , \mathbf{r}_{2} , \mathbf{r}_{1} , \mathbf{r}_{2} , $C_{1}, r_{1}, r_{2}, r_{1}, r_{2}, r_{2}, r_{2}$
- $\begin{array}{c} C_{1,2}, r_{1,2}, \dots, r_{1}, A_{2}^{-}, \dots, r_{1}^{-}(2000) \\ 35. H r_{1,2}, r_{1}, J_{1}, K \dots , J_{n}, T r_{1,2}, L_{n}, \mu_{1}^{+}, J_{1}; E_{-1}^{+}, \mu_{1}^{-}, r_{1}^{-}, \dots, r_{1}^{-}, I_{n}^{-}, r_{1}^{-}, \dots, r_{n}^{-}, A_{2}^{-}, T_{1,2}^{-}, \dots, I_{n}^{-}, I_{n}^{-$

- 51. L. (1979) \mathbf{A}_{1} \mathbf{C}_{1} \mathbf{C}
- 52. L. $\mathbf{r}_{\mathbf{r}}$, G., H_ ..., ..., L. $\mathbf{r}_{\mathbf{r}}$, \mathbf{r}_{\mathbf (1997)
- 54. Li, T., B. L., r, C.: L <u>r</u>, r, \vec{J} , \vec{J} ,
- 55. $[\underline{t}_{1}, \underline{t}_{2}, \underline{t}_{2}$ Н ... в (2012)
- $\begin{array}{c} \mathbf{57}, \ \ \mathbf{57$
- $\begin{array}{c} \mathbf{A}_{\mathbf{r}_{1}} \neq \mathbf{I}_{\mathbf{r}_{1}} \mathbf{I}_$ (1994)
- $\begin{array}{c} C_{\mathbf{r}} & C_{\mathbf{r}} & K_{\mathbf{r}} & K_{$ 60.,
- (2011)
- $\begin{array}{c} 63. \\ \hline \\ \mathbf{f} \\$
- 371 388 (2008)
- $\begin{array}{c} \mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{1}, \mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{1}, \mathbf{f}_{1}, \mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{1}, \mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{1}, \mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{1}, \mathbf{f}_{1}$
- $\begin{array}{c} \mathbf{f}_{1}, \mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{3}, \mathbf{f}_{4}, \mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{2},$

- $600, \mathbf{r}_{11}, \mathbf{r}_{12}, \mathbf{r}_{13}, \mathbf{r}$

- 70. f_1, \dots, f_r , H., $\mathbf{B}_{i_1,\dots,i_r}$, C., $\mathbf{B}_{i_1,\dots,i_r}$, T. (f_1,\dots) : I, J f_1,\dots, f_r , \mathbf{J}_{i_1} , f_1,\dots, f_r , $\mathbf{D}_{i_1,\dots,i_r}$, $f_i \in \mathbf{D}_{i_1,\dots,i_r}$, $f_i \in \mathbf{D}_{i_1,\dots,i_r}$.
- $\begin{array}{c} \mathbf{E}\mathbf{r} \quad \mathbf{f} \quad \mathbf{r} \quad \mathbf{r}$
- J. a_{1} , K. \underline{r} , a_{2} , a_{3} , a_{4} , a_{1} , a_{2} , a_{3} , a_{4} , a_{4} , a_{4} , a_{4} , a_{4} , a_{5} , a_{6} , a_{7} , a_{7}

- $\underline{\mathbf{J}}, \mathbf{D}, \mathbf{L}, \mathbf{v}, \mathbf{v}, \mathbf{u}, \mathbf{h}, \mathbf$ 171, 197 (1999)
- 76. ..., Bir m, r, J., T. ..., J.: r_{1} , r_{2} , r_{2} , r_{2} , r_{3} , r_{1} , r_{1} , r_{2} , r_{3} , r_{3} , r_{1} , r_{1} , r_{2} , r_{3} , r_{3} , r_{1} , r_{3} , r_{3} , r_{3} , r_{1} , r_{3} , r_{3} , r_{1} , r_{2} , r_{3} , r_{3} , r_{3} , r_{3} , r_{1} , r_{1} , r_{2} , r_{3} , r_{3} , r_{3} , r_{3} , r_{1} , r_{1} , r_{1} , r_{1} , r_{2} , r_{3} , r_{3} , r_{1} , $r_$

- 80. \mathbf{r}_{i} , \mathbf{B}_{i} , \mathbf{r}_{i} , \mathbf{A}_{i} , \mathbf{r}_{i} , \mathbf{J}_{i} , \mathbf{L}_{i} , \mathbf{K}_{i} , \mathbf{K}_{i} , \mathbf{L}_{i} , \mathbf{K}_{i} , \mathbf{D}_{i} , \mathbf{L}_{i} , \mathbf{K}_{i} , \mathbf{L}_{i} , \mathbf{K}_{i} , \mathbf{D}_{i} , \mathbf{L}_{i} , \mathbf{K}_{i} , \mathbf{K}_{i} , \mathbf{L}_{i} , \mathbf{K}_{i} , \mathbf{K}_{i} , \mathbf{L}_{i} , \mathbf{K}_{i} , *u* **83**(5), 1178, 1197 (2002)
- 81. $\mathbf{r}_{\mathbf{r}_{1}} = \mathbf{r}_{\mathbf{r}_{2}}$, $\mathbf{A}_{\mathbf{r}_{2}} = \mathbf{r}_{\mathbf{r}_{2}} + \mathbf{r}_$
- $\begin{array}{c} \mathbf{J} \mathbf{C}_{1}, \mathbf{J}_{1} \mathbf{C}_{1}, \mathbf{J}_{2} \mathbf{C}_{1} \mathbf{C}_{1}, \mathbf{J}_{2} \mathbf{C}_{1} \mathbf{C}_{1} \mathbf{C}_{1}, \mathbf{J}_{2} \mathbf{C}_{1} \mathbf{C}_{1}$ 83. (2007)
- 84. T_{\perp} , E., F., f r. I, A.: T_{\perp} , I_{\perp} ,
- 85. T_{--} , E, F $f r_{-}$, A.; r_{-+} , r_{--} , E, F $f r_{-}$, A.; r_{-+} , r_{-+} , r_{--} ,
- $\mathbf{r}_{1},\ldots,\mathbf{r}_{n-1},\ldots,\mathbf{f}_{n-1},\ldots,\mathbf{r}_{n-1},\ldots,\mathbf{e}_$
- $\begin{array}{c} \mathbf{C}_{1} \cdot \mathbf{f}_{1} \cdot \mathbf{f}_{2} \cdot \mathbf{f}_{1} \cdot \mathbf{f}_{2} \cdot \mathbf{f}$

- 90. \mathbf{r}_{11} , \mathbf{A} , \mathbf{B} , \mathbf{r}_{12} , \mathbf{r}_{13} , \mathbf{r}_{14} AC , \cdot , r (2009)
- 91. \mathbf{r}_{1} , \mathbf{r}_{2} , (2011)
- 92. $= (\mathbf{r}, \dots, \mathbf{r}_{m}, \dots, \mathbf{T}_{m}, \mathbf{r}_{m}, \mathbf{r}_{m}) + (\mathbf{r}, \mathbf{r}_{m}, \mathbf{r}_{m}, \mathbf{r}_{m}) + (\mathbf{r}, \mathbf{r}_{m}, \mathbf{r}_{m}) + (\mathbf{r}, \mathbf{r}_{m}, \mathbf{r}_{m}) + (\mathbf{r}, \mathbf{$ K (2010)

- 93. $\mathbf{r}, \mathbf{E}, \mathbf{J}, \dots, \mathbf{E}; \mathbf{C}, \dots, \mathbf{r}, \mathbf{f}, \mathbf{r}, \mathbf{f}, \mathbf{r}, \dots, \mathbf{r}, \mathbf{r}, \mathbf{r}, \mathbf{r}, \mathbf{r}, \mathbf{r}, \dots, \mathbf{r}, \mathbf{r},$
- Proceedings, ..., 811, ..., 14, 20 (2011) 95., ..., D.: A 114(4), 843, 863 (2007) provide a star and the second se