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Abstract. One of the central questions addressed in the project READY was that
of how a system can automatically recognize situationally determined resource
limitations of its user—in particular, time pressure and cognitive load. This chap-
ter summarizes most of the work done in READY on this topic, presenting as
well some previously unpublished results. We first considerwhy on-line recog-
nition or resource limitations can be useful by discussing the ways in which a
system might adapt its behavior to perceived resource limitations. We then sum-
marize a number of approaches to the recognition problem that have been taken in
READY and other projects, before focusing on one particular approach: the analy-
sis of features of a user’s speech. In each of two similarly structured experiments,
we created four experimental conditions that varied in terms of whether the user
was (a) required to produce spoken utterances quickly or not; and (b) navigating
within a simulated airport terminal or standing still. In the second experiment, ad-
ditional distraction was caused by continuous loudspeakerannouncements. The
speech produced by the experimental subjects (32 in each experiment) was coded
in terms of 7 variables. We report on the extent to which each of these variables
was influenced by the subjects’ resource limitations. We also trained dynamic
Bayesian networks on the resulting data in order to see how well the information
in the users’ speech could serve as evidence as to which condition the user had
been in. The results yield information about the accuracy that can be attained in
this way and about the diagnostic value of some specific features of speech.

1 Introduction

The project READY (1996–2004) approached the topic of resource-adaptive cognitive
processes from a different angle than most of the other projects represented in this
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benefited greatly from preparatory studies by André Berthold ([1]) and from advice by Werner
Tack. Some results concerning Experiment 1 were described in a conference paper by Müller
et al. ([2]).



volume: The resources in question were the cognitive resources of computer users; the
adaptation was done by the system that they were using.

The type of system focused on in the research was mobile conversational systems,
for reasons that will become clear below. The resource limitations of interest concerned
the user’s available time and working memory.

Since it would be impractical to discuss all of the lines of research in the project
within a single chapter, this chapter will focus on one issuethat was addressed in a
number of studies over a period of several years, including one study whose results
have not been published previously: the issue of how a systemcan estimate the time
pressure and cognitive load of its user, in particular on thebasis of evidence in the
user’s behavior with the system, such as their speech.

In passing, we will also mention some of the related work in the READY project,
as well as other related research. Other aspects of the research in READY, especially
concerning the use of probabilistic methods for user modeling, are discussed in the
chapter by Wittig in this volume.

1.1 Reasons for Variation in Cognitive Load and Time Pressure

One salient issue in the design of mobile conversational interfaces is the role of situ-
ationally determinedresource limitations of the user—specifically, time pressure and
cognitive load.

Compared with the users of stationary interactive systems,mobile users are more
likely to be experiencing environmentally induced cognitive load. The userU ’s atten-
tion to the environment may be due simply to distracting stimuli in the environment
(as whenU is being driven in a taxicab while using the systemS);5 but oftenU will
be attending actively to the environment while performing actions in it (e.g., handling
objects or navigating through the environment). The tendency of users to attend to their
environment and to multitask may be even greater with conversational mobile systems
than with those that do not use speech as a communication channel, because of the
largely eyes-free and hands-free character of speech.

Although users of stationary systems can of course also experience time pressure,
especially acute time pressure can arise when a conversational interface is used during
interaction with other persons or the environment. For example, a driver may want to
complete a task while waiting at a stoplight; or a user may be interacting with another
person who herself has little time available.

Research on how designers of technical devices can take situationally determined
resource limitations into account has a long tradition in the field of engineering psy-
chology (see, e.g., [3]). In the airplane cockpit, the automobile, or the nuclear power
plant, the importance of factors like mental load and time pressure is too obvious to
be overlooked. The research of this sort that seems most directly relevant to mobile
conversational systems is research on in-car systems for drivers (see, e.g., [4]; [5]). The
advent of conversational systems for drivers has been motivated largely by the perceived
fundamental compatibility of speech with the task of driving (see, e.g., [6]).

5 To simplify exposition, we will use the symbolsS andU to denote a system and its user,
respectively.



about time for me to
head on off to ...
Gate C38 ....

Well, uh, I guess it’s

Get something to eat

Get something to read

Look for a present

Where’s
Gate C38?!

?

Would you like to do
anything on the way?

Fig. 1. Example of how a user’s current resource limitations can call for different system re-
sponses. (Each of the two screens shown is a possible system response to the user’s input utter-
ance.)

With other types of mobile conversational interface, research on the role of user
resource limitations is still in a relatively early stage. But it would be inappropriate to
neglect them. Consider, for concreteness, the example of a conversational system that
serves as an assistant to a traveler in a large airport, answering questions and providing
guidance. Figure 1 illustrates how quite different system behaviors may be appropriate
given different user resource limitations.

1.2 Why Automatic Adaptation?

There are, of course, straightforward ways of ensuring thata system shows appropriate
behaviors in cases like this. First, the user could be allowed to specify explicitly what
type of system response they prefer—for example, by including in the spoken query the
request for a response that contains only the minimally necessary information. But espe-
cially when the user’s resources are limited, such explicitspecification may require too
much mental effort and/or time. Second, the designers of thesystem can try to ensure
that its basic design makes it highly usable even given severe resource limitations—for
example, by providing only simple displays such as the lowerone in Figure 1. But a
design that is well suited for one particular combination ofresource limitations may not
be well suited to a different combination, or to a situation in which there are no signifi-
cant limitations. For example, the minimalistic output on the lower screen in Figure 1 is
unlikely to be optimal for the second user. And even the user experiencing time pressure
might prefer a different type of display if he is not also experiencing cognitive load.

One possible approach to this dilemma is to give the system some capability to rec-
ognize the user’s resource limitations automatically and to adapt to them with some
degree of autonomy. In the next section, we will give some further examples of how
this type of adaptation can be appropriate. Section 3 will then consider the first ques-



tion that this approach raises—How can a system automatically recognize resource
limitations?—giving an overview of possible methods. Against this general background,
the remaining major sections of the paper will present specific empirical results and
analyses concerning the role of the user’s speech as a sourceof evidence on which
adaptation to resource limitations can be based.

2 Possible Forms of Adaptation

Let us suppose in this section that a mobile conversational interfaceS is capable of
making some reasonably accurate estimate of the userU ’s resource limitations at a
given moment. How mightS make use of this assessment to generate more appropriate
system behavior? If there are no plausible answers to this question, there is little point
in investigating techniques for assessing resource limitations.

2.1 Interruption of Communication

Perhaps the simplest form of adaptation is forS simply to stop communicating withU
whenS perceives resource limitations. For example, [5] describes a prototype conver-
sational in-car navigation system that interrupts its speech output whenever the driver
applies the brakes. The goal is that in critical traffic situations,U should be able to de-
vote their full attention to the driving task. In effect, thedepression of the brake pedal
is being interpreted as an indicator of high cognitive load.

2.2 Timing and Form of Notifications

Some conversational systems spontaneously present notifications to users. For example,
the wearable NOMADIC RADIO ([7]) transmits audio messages (such as voice mail) to
the user in a context-sensitive fashion. Although NOMADIC RADIO does not explicitly
modelU ’s cognitive load or time pressure, it does take into accountrelated factors, such
as whetherU is currently interacting withS and whetherU is in a meeting. In addition
to postponing notifications, the system can choose from several forms of notification
that have different degrees of obtrusiveness.

Other notification systems that assess the user’s context have been presented by
Horvitz and colleagues (see, e.g., [8]; [9]). These systemsmake use of decision-theoretic
methods to weigh the benefits of a notification against the costs (e.g., distraction). Here
again, cognitive load and time pressure are not modeled explicitly.

2.3 Dialog Strategy

Many conversational systems are capable of switching between different dialog styles
depending on the current state of the interaction. For example, [10] describes TOOT, a
prototype spoken dialog system for retrieving online trainschedules. TOOT sometimes
applies a highly conservative dialog strategy in which eachpiece of required informa-
tion (e.g., destination, place of departure, time of departure) is elicited from the user
through a focused question and then confirmed through a yes-no question. With less



conservative strategies,S asks more open questions that allowU to specify two or more
pieces of information at a time (e.g., “How may I help you?”).S decides which strategy
to use on the basis of features of the current dialog, such as the system’s confidence in
the success of its own speech recognition. The main motivation here is to allow users
whose speech can be recognized relatively well to proceed through the dialog quickly,
while still accommodating users whose speech is problematic. But analogous changes
in dialog strategy could be based on assessments of cognitive load and/or time pressure:
The more conservative strategies may be especially appropriate for users who are cur-
rently distracted by the environment or by another task, whereas they may be especially
frustrating for users under time pressure.

Such hypotheses about the suitability of particular dialogstyles for particular con-
figurations of resource limitations of course require a theoretical and empirical founda-
tion. An effort along these lines was made in a different lineof research in the READY

project ([11]): In an experimental setting, each of 24 subjects used a mouse to carry
out spoken instructions regarding a graphical control panel (e.g., “SetX to 3, setM to
1, setV to 4”). In half of the trials, the instructions for a given panel werebundled, as
in the example just given; in the other half of the trials, they were presentedstepwise:
After each single instruction (e.g., “SetX to 3”), the system waited until the user had
completed the instruction and clicked on a confirmation button; then the system pre-
sented the next individual instruction. An orthogonal manipulation induced cognitive
load in half of the trials through a secondary task that required subjects to attend to
color changes in one part of the screen.

When instructions were presented bundled, subjects often made errors when a se-
quence comprised 3 or 4 instructions and when they were distracted by a secondary
task. By contrast, the stepwise presentation of instructions was shown to be a slow but
safe strategy, like the conservative dialog strategies discussed above: Subjects made
very few errors even in the most difficult conditions. Given the assumption that users
attach some value to both rapid task completion and the avoidance of errors, it can be
shown that stepwise presentation is on the whole relativelysuitable whenU is expe-
riencing cognitive load; but that the system’s choice between the two modes should
also be based on the length of the instruction sequence and the relative importance of
execution speed and error avoidance. Although it was conducted in an artificial environ-
ment, this study empirically confirms the intuition that different dialog strategies can be
suitable under different configurations of resource limitations.

2.4 Other Forms of Adaptation to Resource Limitations

Several other ways in which a conversational interface might adapt to resource limi-
tations should be mentioned briefly for completeness, although they so far have been
instantiated less clearly than the possibilities discussed above.

On the basis of perceived high cognitive load, a system mightchange its behavior
as follows:

– Present a smaller amount of optional information that is notstrictly required for the
performance ofU ’s system-related task.



For example, the airport assistant introduced above might stick to basic navigation
instructions while guidingU from one location to another, leaving out information
about airport facilities passed along the way.

– Present information in a style that is optimized for easy understanding, at the ex-
pense of other criteria (such as elegance or conciseness).
Some stylistic features (e.g., simplicity and explicitness) are commonly recom-
mended for texts that are typically read or heard by users whocannot be expected
to be paying full attention, such as error messages and help texts (see, e.g., [3],
chap. 6). The novel idea in an adaptive system is that the degree to which such el-
ements should be included should depend on the perceived level of cognitive load,
because of the tradeoffs with other criteria.

– Adapt the interface in such a way as to prevent errors that aretypical of high cog-
nitive load.
A number of categories ofexpert slip are discussed by Norman ([12]), along with
design remedies. Each such remedy (e.g., making objects more visually distinctive;
asking for confirmation) tends to have some drawbacks. Sinceexpert slips are es-
pecially likely whenU is environmentally distracted, some remedies may become
worthwhile under high cognitive load even if their drawbacks outweigh their ad-
vantages given low cognitive load.

Analogous suitable responses to time pressure might include the following:

– Present concrete instructions that describe specific actions, as opposed to encour-
agingU to discover procedures on her own or to form a robust mental model of the
system.

– Optimize messages for speed of presentation and/or comprehension, if necessary at
the expense of other criteria.
For example, synthesized speech could be played at a faster rate, even though it
might sound less pleasant and require more effort to understand.

3 Ways of Recognizing Resource Limitations

Given that there appears to be some potential benefit to the automatic recognition of
a user’s resource limitations, on the basis of what evidencecan a system achieve such
recognition?

3.1 Recognizing Likely Causes of Resource Limitations

A system may be able to recognize factors that tend to give rise to resource limitations
in users. Any evidence that suggests the presence of such a factor constitutes indirect
evidence for the corresponding resource limitation. Table1 gives some examples of the
many possibilities.



Table 1. Examples of ways in which an adaptive system might obtain information about causes
of a user’s resource limitations.

Cause of the resource limitation Evidence of the cause that may be accessible 
to the adaptive system 

Cognitive load 
Difficult driving situation Information from navigation system 

Use of a cognitively demanding interactive 
application 

Information about applications currently 
being used by U 

Distracting noise and/or events in the 
environment 

Sensing of the environment through 
microphones or cameras 

Time pressure 
Requirement for fast task completion 
imposed by the environment (e.g., flight for 
which boarding is about to close) 

S’s access to information about 
environment−imposed constraints (e.g., 
boarding schedules) 

Requirement for fast response imposed by S 
itself (e.g., instruction by S to perform a 
given action quickly) 

S’s access to its own processing history 

3.2 Physiological Indicators

Within engineering psychology, there is a long tradition ofresearch on physiological
measures of cognitive load (see, e.g., [13]; [14]). Such measures have mostly been ap-
plied in laboratory or field studies, but there is some potential for using them for on-line
recognition of and adaptation to cognitive load. Two relatively promising measures can
serve as examples:

Heart Rate Variability Heart rate variability (see, e.g., [15]) tends to decrease with
increasing overall mental workload. In a study somewhat similar in spirit to the one to
be described in Sections 6, Rowe et al. ([15]) investigated the potential of heart rate
variability to serve as in index of cognitive load, not only for the purpose of studying
the workload induced by a given system but also for the purpose of allowing automatic
adaptation. While this study did not yet yield clear conclusions about the value of heart
rate variability for supporting on-line adaptation, they did suggest that further investi-
gation of this possibility is warranted. Because of the needto attach electrodes to the
user’s body, heart rate variability does not fit especially naturally into the scenarios of
mobile conversational interfaces; but perhaps ultimatelythe necessary sensors can be
worn in an unobtrusive way and transmit data to a mobile device.

Pupil Diameter The diameter of a person’s pupil has likewise been shown to vary sys-
tematically as a function of mental load—although it is alsostrongly affected by other
factors, such as ambient illumination and the distance of objects being fixated (see, e.g.,
[16]). These other factors would be especially problematicwith mobile systems. Pupil
diameter can be measured with eye tracking equipment. With stationary system use, a



remote eye tracker can be used that does not have to be attached to the user’s head—
although the user is required to sit relatively still. For mobile use, a head-mounted eye
tracker is required; for the time being, therefore, this type of measurement must be re-
stricted to research studies, as opposed to normal system use. As is the case with heart
rate variability, studies are required to determine whether and in what situations this
type of information can play a useful role in a system that adapts to a user’s resource
limitations.

A study conducted within READY illustrated that that success is not guaranteed even
in apparently optimal circumstances: In an experiment, Schultheis found no difference
in the pupil diameter of subjects when they were reading veryeasy vs. very difficult
texts on a computer screen (see, e.g., [17], [18]). A similarnegative result was obtained
by Iqbal et al. ([19]) on a simlar reading task, but these sameauthors obtained good
accuracy results on different types of tasks.

Other Indices Other measures, which seem to have less immediate promise for use
in mobile systems, include those that concern aspects of brain activity (for which, for
example, Schultheis found some promising results in the experiment just mentioned;
see also [20] for more recent and more promising results) andrespiratory activity.

Comments One general advantage of physiological measures is that in general a con-
tinuous stream of data is received without the need for the user to produce any particular
behavior solely for diagnostic purposes. Some measures, such as heart rate variability
and pupil diameter, respond quickly enough to changes in cognitive load to make on-
line adaptation in principle feasible. A general drawback is the need for specialized
sensors, which users may find uncomfortable or restrictive.

3.3 Evidence in the User’s Behavior With the System

A different general class of evidence comprises information about the user’s behavior
in interacting with the system—for example,U ’s use of manual input devices orU ’s
speech. One positive aspect of these types of evidence is that special sensing devices
may be unnecessary, because the information entersS through the normal input chan-
nels. Moreover,U ’s input behavior (e.g., the fact thatU is making manual input errors
or producing disfluent speech) may be of importance in its ownright—that is, a fact
thatS might adapt to or take into account in its processing.

Evidence in the User’s Motor Behavior Aspects of a user’s motor behavior (e.g.,
tapping or dragging on a touchscreen with a stylus) could in principle reveal something
about a user’s resource limitations. A good deal of researchhas accumulated concerning
features of motor behavior that typically arise under cognitive load and/or time pressure.
Within the READY project, Lindmark ([21]) surveyed these relationships andsuggested
how they might be used for automatic recognition of resourcelimitations. For example,
time pressure tends to lead to an increase in the stiffness ofa person’s limbs, which in
turn tends to cause actions like tapping on the screen to be performed with relatively



high force ([22]); accordingly, when a given user employs more than the usual amount
of force, this fact can be seen as suggestive evidence of timepressure. Cognitive load
tends to increase the likelihood of expert slips (e.g., forgetting to perform an intended
action; tapping on an icon that looks similar to the intendedone; cf. [12]); if the system
can recognize such an error as having been made—in general not a trivial task—it
can use the error as evidence that suggests cognitive load. Some behaviors (such as
the two just mentioned as examples) are made more likely by either cognitive load
or time pressure. Therefore, any mechanism for interpreting such evidence will have
to have some appropriate mechanism for adjusting its hypotheses concerning both of
these resource limitations on the basis of the same evidence. Although the emphasis in
the present chapter is not on inference mechanisms, one possible such mechanism will
be discussed in connection with the analyses in Sections 7 and 8.

Evidence in the User’s SpeechWith conversational interfaces, an especially natural
type of indicator of resource limitations comprises features of the user’s speech. Be-
causeS needs to processU ’s speech anyway, there must already exist some type of
microphone for sensing the speech and some software for analyzing it. Therefore, as
with motor indicators, in the best case the only further requirements concern software
for identifying and interpreting the indicators. The prospects for recognizing resource
limitations on the basis of this type of indicator will be examined in detail starting in
Section 4.

4 Experiments: Introduction

As was argued in 3.3, features of a user’s speech appear in several respects to be a
promising source of information about a user’s cognitive resource limitations. But an
obvious first question is: Is there enough information available in a user’s speech to
support a reasonably reliable recognition of these resource limitations?

4.1 Earlier Research on Speech Indicators

Before initiating a time-consuming experimental study, wesurveyed previously con-
ducted studies of relations between cognitive load or time pressure and features of
speech.6

Distinction From Other Topics The idea of making inferences about a speaker on
the basis of features of their speech is by no means new. One topic of high practical
importance is the recognition of emotion on the basis of speech (see, e.g., [34]). Part
of this literature focuses on the effects of stress (see, e.g., [35]). Stress is related to
cognitive load and time pressure, in that these resource limitations can be both causes
and consequences of stress. But there are also essential aspects of the concept ofstress
that are not necessarily associated with cognitive load or time pressure: physiological

6 Since this survey was made in 1998, it covered work through the late 1990s.



Table 2.Overview of the most important indicators of cognitive loadfound in some early studies.

Indicator Direction* Tally** Example Study 

Output rate 
Articulation rate − 7/7 Lazarus−Mainka and Arnold 

(1987) 

Speech rate − 7/7 Kowal and O’Connell (1987) 

Pauses 
Onset latency (duration) +/(−) 9/11 Greene (1984) 

Silent pauses (number) + 4/5 Rummer (1996), Exp. 1 and 2 

Silent pauses (duration, all) + 6/8 Goldman−Eisler (1968) 

Silent pauses (duration, intraphrasal 
only) 

+ 2/2 Butterworth (1980) 

Filled pauses (number) + 4/6 Wiese (1983) 

Filled pauses (duration) + 1/2 Grosjean and Deschamps (1973) 

Indicators involving output quality 
Repetitions (number) + 5/6 Deese (1980), Exp. 2 

Sentence fragments (number) + 4/5 Rummer (1996), Exp. 2 

False starts (number) + 2/4 Roßnagel (1995) 

Self−corrections (number)*** +, −, 0 2, 1, 4 Oviatt (1995) 

* "+" means that the measure was generally found to increase under conditions of high cognitive 
load; "−" means the opposite. 

** "m/n" means that of n relevant studies, m found the tendency indicated in the second column. (In 
most cases the tendency was statistically significant.) 

*** Results concerning self−corrections show an inconsistent pattern. 

arousal and stressors such as noise or high acceleration (cf. [3], chap. 12). We believe
that it can be important to be able to adapt to cognitive load or time pressure even
when these factors are not present—for example, when the user is performing two tasks
at once and would like to proceed quickly but is not especially concerned about the
consequences of failure. We therefore focus here on previous studies that did not involve
especially stressful situations. (A much more detailed andcomprehensive analysis of
studies like these is given by [1].)

Effects of Cognitive Load With regard to cognitive load, a number of features of
speech have been investigated in multiple studies; hence itis possible to draw some
fairly general conclusions concerning their dependence oncognitive load. Table 2 sum-
marizes the most important of these indicators.

Effects of Time Pressure Perhaps surprisingly, the number of results that can be
extracted from previous studies concerning the effects of time pressure is much smaller



than the number for cognitive load. One of the more obvious hypotheses is that people
speak more quickly under time pressure. This hypothesis wasconfirmed in a study
by Kelley and Stone ([36]), and a study by Marx ([37]) showed amarginal tendency
of the same sort. This same study by Marx revealed a statistically significantly greater
tendency of speakers who had been put under time pressure to repeat parts of utterances.

5 Experimental Method

5.1 Purpose of Experiments

The goals of our two experiments were (a) to fill the gap in knowledge concerning the
impact of time pressure on features of speech; (b) to examinewithin a single setting
a large number of features that had previously mostly been studied separately; and (c)
to obtain raw data that could be used to determine how well cognitive load and time
pressure can be recognized on the basis of speech.

We required some way of capturing users’ speech while they are subject to known
resource limitations. In principle it would be possible to capture the speech in fairly
natural conditions, if we could confidently assess the resource limitations in these con-
ditions. Healy and Picard ([38]) applied this strategy in their study of physiological
assessment of driver stress: Subjects were required to drive along a route that included
a number of events which had predictable stress levels.

We chose an experimental setting for our studies, so as to be able to exert greater
control over both the independent variables and the nature of the speech utterances.

We conducted two experiments, separated by about 1 year in time; Experiment 2 can
be seen as a replication and extension of Experiment 1. For concreteness, Experiment 1
will be described separately first.

5.2 Method for Experiment 1

Materials The experimental environment simulated a situation in which a user is walk-
ing through a crowded airport terminal while asking questions to a mobile assistance
system via speech (see Figure 2). In each of 80 trials, a picture appeared in the upper
right-hand corner of the screen. On the basis of each picture, the subject was to ask a
question, after motivating it with an introductory sentence. For example, for the picture
shown in Figure 2, a subject might say “I’m getting thirsty. Is there . . . will it be possible
to get a beer on the plane?”.

Design Two independent variables were manipulated orthogonally:

– NAVIGATION : whether or not the subject was required to move an icon on the
screen through the depicted terminal to an assigned destination by pressing arrow
keys, while avoiding obstacles and remembering a gate number that comprised five
digits and one letter. When navigation was not required, thesubject could ignore
the depicted terminal and concentrate on the generation of appropriate utterances
in response to the pictures.



Fig. 2. Environment used in the experiments, with a typical pictorial stimulus.

The navigation task was designed to induce the sort cognitive load that would be
induced by a nonverbal task performed by the user of a mobile system while in-
teracting with the system. Walking around an airport would be one example of
such a task; but there are of course differences between (a) walking in a real three-
dimensional space and (b) moving an abstract figure within a two-dimensional com-
puter screen. We do not refer to this condition as the “cognitive load” condition
because it is not known to what extent the task actually induces cognitive load in
any given subject.

– SPEECH TIME PRESSURE: whether the subject was induced by instructions and
rewards (a) to finish each utterance as quickly as possible or(b) to create an
especially clear and comprehensible utterance, without regard to time.
More specifically, in the condition with time pressure, the subject was told that his
speech would be interpreted by an experienced airport assistant who was in great
demand because of her extensive knowledge. Utterances directed to this assistant
were to be completed quickly, so that she could go on to assistother airport visitors.
In the condition without time pressure, subjects were to direct their utterances to a
new, inexperienced airport assistant. In this condition, nothing was said about time
limitations; the emphasis was to be on ensuring that this assistant understood the
utterances.

The instructions concerning SPEECHTIME PRESSUREmake it almost inevitable for
some differences in the speech of the subjects to appear as a function of this variable.
Still, there are empirical questions concerning (a) the particular forms that the utterances
take in the two conditions (e.g., whether, under SPEECHTIME PRESSURE, subjects will
articulate more quickly, use fewer words, and/or think lessbefore starting to speak);
and (b) whether the differences will be large enough to allowaccurate discrimination
between the two conditions.



We call this second variable SPEECHTIME PRESSUREto highlight its differences
from other possible forms of time pressure. For example, if aperson’s goal is the quick
completion of some larger task (e.g., getting to the departure gate), they may or may
not try to save time by completing individual utterances quickly. But time pressure
with regard to utterance completion can arise for various other reasons as well—for
example, because of real or imagined time limitations on thepart of the listener or
system; because of a task that the user is performing that leaves only brief intervals free
for speaking; or because of a high cost of utterances to the speaker, as in the case of
an expensive communication channel. Any attempt to have a system adapt to SPEECH

TIME PRESSUREin a given setting should take into account the likely reasons for this
form of time pressure that might apply in that setting.

Procedure After an extensive introduction to the scenario, the environment, and the
4 (2 × 2) conditions, each subject dealt with 4 blocks of trials, each block involving
20 pictures distributed over 4 destinations. Each block waspresented in one of the 4
conditions, the order being varied across subjects according to standard procedures.

Subjects The 32 subjects, students at Saarland University, were paidfor their partic-
ipation. An extra reward was given to one of the participantswho most successfully
followed the instructions regarding the time pressure manipulation.

Coding and Rating of SpeechEach of the 2560 (32×80) utterances was transliterated
and coded with respect to a wide range of features, includingalmost all of those that
had been included in previous published studies. On the basis of the transliterations
(minus the coding symbols), four independent raters sortedthe stimulus pictures into
5 categories in terms of the complexity of the responses thatthey tended to call for.
An aggregation of these ratings was later used to control forthe different degrees of
difficulty of the speech tasks invoked by the pictures.

In this chapter, we report results only for a subset of seven indicators which, on the
basis of the results, seem most promising as indicators of cognitive load and/or time
pressure:7

– NUMBER OF SYLLABLES : The number of syllables in the utterance.
– ARTICULATION RATE: The number of syllables articulated per second of speaking

time, after elimination of the time for measurable silent pauses.
– SILENT PAUSES: The total duration of the silent pauses in the utterance, expressed

relative to the length of the utterance in words (to take intoaccount the fact that
longer utterances offer more opportunities for pauses). Inaccordance with usual
practice, a silent pause is defined as a silence within the utterance that lasts for at
least 200 ms.

– FILLED PAUSES: The corresponding measure for filled pauses (e.g., “Uhh”).
– HESITATIONS: The number of silences with a duration of less than 200 ms, again

relative to the length of the utterance in words.

7 Much more detailed reports covering all of the variables aregiven by Müller ([39], for Exper-
iment 1) and by Kiefer ([40], for Experiment 2).
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Fig. 3. Visualization of the eight conditions realized in Experiments 1 (left) and 2 (right). (In the
experiments, the time pressure concerned specifically the time available to generate spoken input
to the mobile system.)

– ONSET LATENCY: The length of the time interval between the presentation ofthe
pictorial stimulus and the first syllable spoken by the subject.

– DISFLUENCIES: The logical disjunction of several binary variables, eachof which
indexes one type of speech disfluency: self-corrections involving either syntax or
content; false starts; or interrupting speech in the middleof a sentence or a word.
Although each of these variables has been treated as a separate dependent variable
in some previous studies, they are grouped together here because each phenomenon
in question occurs too infrequently in our data to give rise to statistically reliable
effects. (Filled and silent pauses, which may also be regarded as disfluencies, are
not counted here, because they are treated as separate variables.)

5.3 Method for Experiment 2

The method for Experiment 2 was identical to that for Experiment 1, with one excep-
tion: During all of the time in which a subject was performingthe experimental tasks,
they heard through a headphone prerecorded loudspeaker announcements of the sort
that travelers typically hear at airport terminals (concerning matters such as flight depar-
tures, gate changes, missing persons, and security warnings). These German-language
announcements, which had been recorded at Frankfurt Airport, were arranged digitally
so that there were only minimal pauses between announcements. For our present pur-
poses, the function of these announcements was to add an additional source of cognitive
load—one which, in contrast to the navigation task, seemed likely to interfere more di-
rectly with the process of speech production, because of itsverbal nature.

Figure 3 gives a graphical overview of the eight specific conditions that were real-
ized in the two experiments. Our focus will be on the effects that occurred within each
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Fig. 4. Means for the variable NUMBER OF SYLLABLES in the four conditions of Experiment 1
(left) and Experiment 2 (right).

experiment. Although it is of some theoretical interest to see how the announcements
affected speech production, in the present chapter we will not pay much attention to a
comparison of the results with and without announcements. One reason is that there is
little practical interest attached to the question of whether a system can recognize, on the
basis of a user’s speech, whether that user is being distracted by irrelevant speech from
the environment: IfU ’s speech can be picked up by a microphone, then presumably the
presence of ambient speech could be directly detected via the microphone as well. Also,
from a methodological point of view, we must be cautious in interpreting specific dif-
ferences between the results of Experiments 1 and 2: Even though considerable effort
was made to replicate the method of Experiment 1, for practical reasons Experiment 2
was conducted by a different experimenter and the utterances were transliterated by a
different researcher. Moreover, the subjects were not necessarily sampled from the same
population. It is therefore most realistic to focus on the robust results which are found
in both of the experiments despite the differences between them.

6 Experimental Results

6.1 Statistical Analyses

For each of the indicators analyzed here, a three-way analysis of variance (ANOVA)
was conducted, with two within-subject variables (NAVIGATION and SPEECH TIME

PRESSURE) and one between-subject variable (ANNOUNCEMENTS).8 In accordance

8 Before the ANOVAs were conducted, multivariate analyses ofvariance had been conducted
with a view to ensuring against capitalizing on chance with the relatively large number of
ANOVAs; these MANOVAs demonstrated that the interpretation of the ANOVAs reported
here is justified.



with the considerations just mentioned, we will interpret only the main effects of the
within-subject variables and the interactions between them.

6.2 Number of Syllables

Figure 4 shows the means for the variable NUMBER OF SYLLABLES for each of the
eight conditions. The ANOVA confirms that there is a highly significant main effect
of SPEECH TIME PRESSURE(F (1, 63) = 97.573, p < 0.001): Not surprisingly, the
instruction to finish each utterance quickly led to a much smaller number of syllables
per utterance.

Somewhat less obviously, the requirement to navigate led tosomewhat shorter ut-
terances (F (1, 63) = 8.295, p < 0.01). Although there is no significant interaction
between the two independent variables, the graphs suggest,plausibly, that the differ-
ence arises mainly in the condition without time pressure, in which the subjects were
less ambitious with regard to the goal of producing unambiguous, high-quality utter-
ances. When they were under time pressure, they were trying to keep their utterances
short even when not navigating, so there was little room for the navigation task to cause
further reduction in their length.

The results concerning NUMBER OF SYLLABLES are novel for the simple reason
that previous studies have not in general included utterance length as a dependent vari-
able. A likely reason for this omission is that utterance length has diagnostic signif-
icance only relative to a particular speech task: The fact that a user has produced a
15-syllable utterance in itself says little about her cognitive state; but if we know that
the utterance was produced as an answer to a straightforwardyes/no question, it may
be significant. We will see in 7.1 how the properties of the current speech task can be
taken into account in the interpretation of speech indicators.

6.3 Articulation Rate

As can be seen in Figure 5, on the average subjects produced more syllables per second
when they were under time pressure than when they were not (F (1, 63) = 47.726, p <

0.001). Though this result is intuitively plausible, it is not logically necessary, given
that there are other ways of coping with time pressure (cf. 4.1). There is also a tendency
to articulate less quickly when navigating (see the slope ofthe two lines;F (1, 63) =
4.355, p < 0.05), as has been reported in a number of previous studies (cf. Table 2). This
effect is stronger under time pressure; this interaction (F (1, 63) = 5.565, p < 0.05) is
understandable in that, under time pressure, subjects are articulating relatively fast, so
there is more room for them to slow down.

The fact that the two main effects and the interaction are statistically significant,
even though the differences involving ARTICULATION RATE do not appear visually
striking in the graphs, testifies to the precision and sensitivity of A RTICULATION RATE

as an index.

6.4 Silent Pauses

The results for SILENT PAUSES (Figure 6) are complex. It is easily understandable
that there is a highly significant main effect of SPEECHTIME PRESSURE(F (1, 63) =
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27.689, p < 0.001): Without such pressure, subjects have no motivation to save time by
avoiding pauses; perhaps even more importantly, they are motivated to produce high-
quality utterances, which presumably tend to call for more careful planning, which
can be accomplished during pauses. In particular, we have already seen (Figure 4) that
utterances produced without time pressure tend to be considerably longer; and as was
shown by Oviatt ([41]), longer utterances tend to be associated with a relatively high
number of disfluencies such as silent pauses.

Regarding the effects of NAVIGATION , previous studies (cf. Table 2) had shown that
a concurrent task tends to increase the number and/or lengthof silent pauses—plausibly
enough, since a concurrent task demands the subjects’ attention at least intermittently.
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Experiment 2 (right).

This pattern is in fact seen in the upward slope of three of thefour lines in Figure 6.
The reason why there is no significant overall main effect of NAVIGATION is that a
sharp decrease occurs in Experiment 1 when there is no time pressure. This decline is
understandable when we recall that, without time pressure,the need to navigate leads to
shorter utterances (Figure 4). In other words, subjects’ adaptation to the navigation task
proves more important in this case than the tendency of this task to increase cognitive
load.

This specific result reminds us of a general point that is often emphasized in re-
search on the effects of resource limitations on behavior (see, e.g., [3], chap. 11; [42]).
Resource limitations do not in general have a direct and unavoidable impact on perfor-
mance; typically, a person has some freedom to decide how to deal with them.

6.5 Filled Pauses

With the indicator FILLED PAUSES (Figure 7), the most striking difference between
the two experiments appears. In Experiment 1 we see an effectthat had been found
in previous studies (cf. Table 2): an increase in filled pauses when a concurrent task
is added. With the addition of the loudspeaker announcements in Experiment 2, this
relatively subtle effect is reduced as the total duration offilled pauses increases by a
factor of about 3; overall, there is no significant main effect of NAVIGATION . Although
it is plausible that subjects generate more filled pauses in order to block out the distract-
ing loudspeaker announcements, we should not attach much weight to this difference
between the experiments, for the reasons given in 5.3.

6.6 Hesitations

The very short pauses counted by the variable HESITATIONS (Figure 8) occur signifi-
cantly less frequently when the subject is navigating (F (1, 63) = 8.407, p < 0.01); a
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possible explanation for this phenomenon is in terms of the reduction in the complexity
of utterances when the subject is navigating (cf. Section 6.4). This result is novel in that
virtually no previous studies have looked at hesitations asa dependent variable. The
apparent effect of time pressure in the graphs is not statistically reliable, but note that it
would be consistent with the results for SILENT PAUSES (6.4).

6.7 Onset Latency

Regarding ONSET LATENCY (Figure 9), we see a highly significant tendency for sub-
jects to begin with the production of their utterance soonerwhen they have been in-
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structed to get finished with the utterance quickly (F (1, 63) = 95.841, p < 0.001).
In addition to the obvious explanation that they are simply following instructions, this
effect may be due in part to the lower complexity of the utterances produced under
time pressure (cf. 6.2), which reduces the amount of planning required. The tendency
(suggested by the lack of parallelism in the lines of each graph) for ONSET LATENCY

to be affected more by NAVIGATION when there is SPEECH TIME PRESSUREis con-
firmed by a significant statistical interaction between the two independent variables
(F (1, 63) = 8.079, p < 0.05). The positive impact of cognitive load on onset latency
that was found in many previous studies (see Table 2) is not found here to a statistically
significant degree, although there is a visible tendency in that direction.

6.8 Disfluencies

Although each of the specific types of disfluency summarized by the variable DISFLU-
ENCIESoccurs too infrequently to yield statistically significantdifferences as a function
of the independent variables, a robust tendency does appearfor the disjunction of the
specific variables: As can be seen in Figure 10, DISFLUENCIESincrease when the sub-
ject is required to navigate (F (1, 63) = 8.403, p < 0.01, as was shown in previous
studies (cf. Table 2). The other tendency that is apparent inthe figure—for disfluencies
to increase when there is no time pressure—is not statistically reliable in these data,
though it would be consistent with the greater complexity ofutterances generated when
there is no time pressure (cf. [41]).

6.9 Discussion

We have seen that, with the exception of FILLED PAUSES, each of the dependent vari-
ables discussed here shows one statistically reliable effect of time pressure and/or the



navigation task. As was mentioned above, some of these results replicate and extend
findings from previous experimental research, while othersyield new information—
especially those that concern the independent variable of SPEECH TIME PRESSURE

and its interactions with the presence of a concurrent task.
Taken together, these results suggest that observation of these variables in a person’s

speech might allow a system to infer that person’s current resource limitations. But the
question of the extent to which such recognition is possibleis not directly addressed by
the conventional analyses that we have presented so far: A statistically significant result
in an ANOVA shows that the result is unlikely to have occurredbecause of chance alone,
but it does not guarantee that the dependent variable in question will have diagnostic
value. To determine the prospects for recognizing resourcelimitations, we will apply
quite different methods in the following two sections.

7 Learning of User Models

If we want to create a system that recognizes the resource limitations of its users on the
basis of their speech, we need to take two main steps:

1. Use machine learning methods to create some sort of model relating resource limi-
tations to speech indicators, using data such as those of these experiments (see the
rest of this section).

2. Apply this model to the data of each user, using the features of their speech as
evidence (Section 8).

7.1 Bayesian Network Structure

Regarding Step 1: There exists a great variety of machine learning techniques for clas-
sifying cases on the basis of their features, including support vector machines, neural
networks, decision trees, and case-based reasoning.9 A system that aims to recognize
dynamically changing resource limitations imposes the following requirements on its
learning and inference methods:

– The method should make it possible to interpret evidence from qualitatively dif-
ferent sources (cf. Section 3), ranging from likely causes of resource limitations to
various types of indicator.

– The method should do justice to the fact that, while resourcelimitations change
over time, the cognitive state of a user at any one moment willin most cases be
similar to his or her state at the previous moment.

– The modeling method should yield a more or less interpretable model: Especially
when several qualitatively different types of evidence arebeing used, it should be
possible, by inspection of the model, to understand their relationships to one an-
other (cf. [46]). Otherwise, it may be difficult to adapt the method to scenarios that
involve different types of evidence.

9 For general treatments of machine learning techniques, see[43]; [44]. Applications of such
techniques to the modeling of computer users are discussed in [45].
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Fig. 11. Structure of the dynamic Bayesian network used in the evaluation of recognition accu-
racy. (Nodes within the two large boxes correspond to temporary variables that index features
of the current utterance. Each number in parentheses shows the number of discrete states for the
variable in question.)

– It should be possible to acquire a model of each individual user, so as to be able
to take into account individual differences in the ways in which resource limita-
tions are reflected in speech. But user model acquisition should also be able to take
advantage of data acquired from users other than the currentuser, so that learning
does not have to begin from scratch with each new user (cf. [47]).

Among the learning and inference techniques that best fit this combination of re-
quirements are those that are associated with Bayesian networks (BNs).10

The BN structure employed in the present study is illustrated in Figure 11. (The
nodes in the lower box labeled TIME SLICE 2 can be ignored for the moment.) We
will first consider its qualitative structure; the quantitative modeling of the relationships
among the variables represented will be discussed below.

The three nodes NAVIGATION , SPEECHTIME PRESSURE, and ANNOUNCEMENTS

on the left correspond to the three main independent variables of the experiments. The

10 The technical aspects of the use of Bayesian networks in the READY project, with a focus on
the learning of BNs, are discussed in the chapter by Wittig inthis volume.



node DIFFICULTY OF SPEECHTASK refers to the rated complexity of the speech task
created by the stimulus picture (cf. Section 5). Each of these nodes represents a variable
that can be seen as influencing the values of the seven dependent (indicator) variables
that were analyzed in Section 6; these variables are represented by the seven nodes on
the right within the box for TIME SLICE 1. Further influences on the indicator variables
are represented by the seven nodes on the far right in the figure, which correspond to
individual base rates for the seven indicator variables. They are introduced to take into
account individual differences in the overall level of the indicator variables. The value
of each such variable is constant for eachU : It is simply computed as the mean value
of the variable in question for the entire experiment.

The BN structure in the figure shows a rather drastic simplification of the causal
relationships that actually exist between the variables inquestion. For example, the ab-
sence of links among the base rate variables implies that these variables are statistically
independent. In addition to being implausible, this assumption was shown to be false
by our own factor analyses and applications of algorithms for learning BN structures
from data. Nonetheless, this simplified model was found to perform better at the task of
recognizing a speaker’s time pressure and cognitive load than did more complex models
that took into account the statistical dependencies.11

Our question in the evaluation study will be: If a userU produces a sequence of
utterances in a given experimental condition, how well can asystemS recognize what
condition the user was in? Therefore, the variables NAVIGATION and SPEECH TIME

PRESSUREcan be viewed here asstatic variables whose value does not change over
time. The seven base rate variables are also static. By contrast, each of the variables
inside the boxes labeled TIME SLICE 1 and TIME SLICE 2 refers to an aspect of just one
utterance. Hence correspondingtemporary nodes need to be created for each utterance.
We are therefore dealing with adynamic Bayesian network (DBN) that comprises a
series oftime slices.12

7.2 Quantitative Parameters

In a BN such is the one used here, which does not include continuous variables, each
variable has 2 or more discretestates, or possible values. For example, for NAVIGA -
TION, the two states are “Navigation” and “No navigation”. For the base rate vari-
able BASE RATE FORNUMBER OF SYLLABLES , each state corresponds to one of four
ranges of numbers of syllables.

For eachroot node (i.e., a node that has no links directed at it), the system’s ini-
tial expectation about the value of the variable in questionis represented by a vector
of probabilities that represents a probability distribution. For example, for each of the
nodes SPEECHTIME PRESSURE, NAVIGATION , and ANNOUNCEMENTS, the probabil-
ities are simply<.50, .50>, reflecting the fact that each value of each of these variables

11 A possible reason is that in the more complex models the estimates of some probabilities in
the learned BN are less accurate because they are based on relatively few observations.

12 An explanation of the general principles of dynamic Bayesian networks can be found, for
example, in chap. 17 of [48]. A discussion with regard to usermodeling of the sort done here
is given by [49].



occurred equally often in the experiments. For each of the base rate nodes, the proba-
bility vector reflects the empirically determined distribution of the base rate in question
in the group of subjects in these experiments.

For each node that is not a root node, aconditional probability table (CPT) rep-
resents the system’s assumptions about how the value of the variable is related to the
values of itsparent variables (corresponding to the nodes with links that point to it).
For example, each probability in the CPT for DISFLUENCIESrepresents the likelihood
that a disfluency will occur (or not occur) in an utterance, given particular values of the
parent variables SPEECHTIME PRESSURE, NAVIGATION , ANNOUNCEMENTS, DIFFI-
CULTY OF SPEECHTASK, and BASE RATE FORDISFLUENCIES.

A BN makes probabilistic inferences when it is evaluated: Typically, one or more
variables in the BN areinstantiated; that is, the probability distribution representing
the system’s belief about the value of such a variable is replaced by a probability dis-
tribution which expresses certainty that one particular value is realized. Then the BN
is reevaluated; typically the system’s beliefs about some of the uninstantiated variables
are updated to be consistent with the new information provided by the instantiations.

7.3 Learning the Quantitative Parameters

Although we specified the structure of the BN shown in Figure 11 by hand, the prob-
abilities need to be learned empirically. Such learning is quite straightforward in a BN
(such as this one) that includes only observable variables:In accordance with the usual
maximum-likelihood method (see, e.g., [50]), the estimateof each (conditional) proba-
bility is computed simply in terms of the (relative) frequencies in the data.13

Since we want to test a learned BN model with the data of a givenuserU , we must
not includeU ’s data in the data that are used for the learning of the corresponding BN.
Accordingly, we learned for eachU the conditional probability tables for a separate
BN using the data from the other 63 subjects. The learned BN has the structure shown
in Figure 11 minus the nodes shown for TIME SLICE 2; the CPTs for the temporary
variables within each time slice are the same as the ones learned for TIME SLICE 1.

8 Evaluation of the User Models

8.1 Procedure

The basic idea of the evaluation of the learned models can be explained with reference
to Figure 3: Given the behavior of a subject in one of the eightexperimental conditions,
our system will try to infer which condition the subject was in when he or she produced
that behavior. More specifically, when asking the system to assess the probability thatU
was under time pressure, we will tell the system whetherU was navigating and whether
U was distracted by loudspeaker announcements. Similarly, when asking the system to
assess the probability thatU was navigating, we will specify the true values of the other
two independent variables. (We will not report on tests of how well S can discriminate

13 The learning of BNs in much more complex settings is discusedin the chapter by Wittig in
this volume.



Table 3. Procedure used in evaluating the accuracy with which a learned Bayesian network as-
sesses the value of the variable SPEECH TIME PRESSUREfor a given user. (The procedure is
identical when the value of NAVIGATION is to be assessed, except that the roles ofT andN are
interchanged.)

Relevant variables and their values 
• A user U 
• Values t, n, and a of the Boolean variables T (Speech Time Pressure), N (Navigation), 

and A (Announcements) 

Task 
Infer the value of T on the basis of indicators in U’s speech 

Preparation of the test data 
Select the 20 observations for U in which T = t, N = n, and a = A, in the order in which 
they occurred in the experiment in question 

Evaluating recognition accuracy 
Initialize the model: 

1. Create the first time slice of the BN for U 
2. Instantiate each of the individual base rate variables with its true value for U 
3. Also instantiate N and A with their true values n and a, but leave the variable T 

(whose value is to be inferred) uninstantiated 
For each observation O in the set of observations for U: 

1. In the newest time slice of the BN, derive a belief about T: 
• Instantiate all of the temporary variables for this time slice with their values in O 
• Evaluate the BN to arrive at a belief regarding T 
• Note the probability assigned at this point to the true value t of T 

2. Add a new time slice to the dynamic BN to prepare for the next observation 

between the presence and the absence of ANNOUNCEMENTS, for the reasons given in
5.3, except to note in passing that the results are roughly comparable to those reported
below for the recognition of NAVIGATION .)

More formally, the procedure for evaluating a learned BN is given in Table 3.

8.2 Results

Because of the differences between Experiments 1 and 2 (cf. 5.3), in Figure 12 the
results of the modeling evaluation are shown separately foreach of the two experiments.
Each curve is the result of averaging 32 curves, one for each subject in the experiment
in question.14

Recognizing Time PressureLooking first at the results for recognizing SPEECHTIME

PRESSURE(left-hand graphs), we see that the BNs are on the whole rather successful:
The average probability assigned to the actual current condition rises sharply during

14 The results for individual subjects are much less smooth than these aggregated results: The
individual curves often show sharp jumps and extreme values.



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Number of Observations 

0.40 

0.45 

0.50 

0.55 

0.60 

0.65 

0.70 

0.75 

0.80 

0.85 

0.90 

0.95 

A
ve

ra
ge

 p
([

A
ct

ua
l C

on
di

tio
n]

) 
T+  N− 
T−  N− 

T+  N+ 
T−  N+ 

Recognition of Time Pressure 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Number of Observations 

0.40 

0.45 

0.50 

0.55 

0.60 

0.65 

0.70 

0.75 

0.80 

0.85 

0.90 

0.95 

A
ve

ra
ge

 p
([

A
ct

ua
l C

on
di

tio
n]

) 

T+  N− 
T−  N− 

T+  N+ 
T−  N+ 

Recognition of Navigation 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Number of Observations 

0.50 

0.55 

0.60 

0.65 

0.70 

0.75 

0.80 

0.85 

0.90 

0.95 

A
ve

ra
ge

 p
([

A
ct

ua
l C

on
di

tio
n]

) 

T+  N− 
T−  N− 

T+  N+ 
T−  N+ 

Recognition of Time Pressure 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Number of Observations 

0.50 

0.55 

0.60 

0.65 

0.70 

0.75 

0.80 

0.85 

0.90 

0.95 

A
ve

ra
ge

 p
([

A
ct

ua
l C

on
di

tio
n]

) 

T+  N− 
T−  N− 

T+  N+ 
T−  N+ 

Recognition of Navigation 

With Acoustic Distraction (Experiment 2):

Without Acoustic Distraction (Experiment 1):

Navigation

NavigationSpeech Time Pressure

Speech Time Pressure

Fig. 12. Accuracy of the learned dynamic Bayesian networks in inferring the correct value of
SPEECH TIME PRESSURE(“T”, left) and NAVIGATION (“N”, right) in Experiment 1 (above)
and Experiment 2 (below). (Each curve shows the aggregated results for one combination of
values of the variables SPEECH TIME PRESSURE, NAVIGATION , and ANNOUNCEMENTS. In
each curve, the point for theith observation shows the average probability which the Bayesian
network assigned to the subject’s actual condition after processing the firsti observations.)



the first few observations. Note that in each experiment, recognition of SPEECHTIME

PRESSUREis easier when there is no navigation task.15 This result is understandable in
the light of the conventional analyses discussed in Section6: On the whole, the effects of
time pressure were somewhat greater when there was no navigation task (i.e., the lines
tended to be farther apart on the left-hand sides of the graphs), since in that condition
speakers were able to respond more sensitively to the time pressure (or lack of it).

Recognizing Navigation In Experiment 2, the results for recognition of NAVIGATION

are consistent over the four conditions: After several observations, the system on the
average assigns a probability of roughly 0.65 to the correctcondition. The fact that
this probability never rises much above 0.70, even after 20 observations, shows that
there is an inherent difficulty in discriminating between the presence and absence of
NAVIGATION which cannot be overcome through the provision of a large number of
observations.

In Experiment 1, the results are generally poorer, and they show rather strange vari-
ations between conditions and over time.16 One way of understanding the better results
for Experiment 2 is simply to note that the indicators shown in Figures 6 through 10
tend to occur to a greater extent in Experiment 2 (i.e., the lines in the right-hand graphs
in these figures tend to be higher than those in the left-hand graphs). Since these indi-
cators are on the whole low-frequency events, any increase in their frequency is likely
to make recognition more accurate. It may be speculated thatthis overall difference
in the frequency of indicators is due to the presence of loudspeaker announcements in
Experiment 2, which push subjects closer to the limits of their processing capacity.

Dispensing With Individual Indicators Especially when we consider the practical
problem of measuring indicators automatically (see 8.3), it becomes interesting to con-
sider which of the seven indicators might be dispensable on the grounds that they do
not add significantly to the accuracy of recognition. We repeated the simulations sum-
marized in Figure 12 seven times, each time leaving out one ofthe seven indicators.
Since it would be tedious and imprecise to examine seven further sets of four graphs
similar to those shown in Figure 12, we computed for each graph a single number that
summarizes the success of recognition: the mean of the 80 probabilities shown in the
four curves of the graph. The question then becomes: To what extent do these mean
probabilities decline when one of the indicator variables is left out of consideration?

Table 4 shows the results. The indicator whose removal has the greatest impact
is clearly NUMBER OF SYLLABLES . Each of the other indicators seems surprisingly

15 Since this statement applies to each of the observations 1 through 20 in each experiment, the
difference is statistically reliable for each experiment with p < .001 by a sign test.

16 As was mentioned in an earlier report on Experiment 1 ([2]), the results for the recognition of
navigation are actually better if the system isnot told whetherU was under time pressure—
perhaps because the BN then bases its assessment on a larger number of conditional probabil-
ities and hence, indirectly, on a larger amount of data from other subjects. Overall, however,
there is no systematic tendency for recognition to be betteror worse when the system is told
the value of the independent variable(s) that it is not trying to assess.



Table 4. Impact on recognition accuracy of leaving out of consideration each of the seven indi-
cator variables. (Each number in the column “All Indicators” is the mean of the 80 probabilities
shown in the corresponding graph in Figure 12, expressed as apercentage. Each number in a
column to the right (except the rightmost column) shows the corresponding mean change in ac-
curacy (as a percentage, but in absolute terms) when the simulation is performed without use of
the indicator variable in question. The rightmost column shows the sum of these changes.)

  All 
Indicators 

Syl- 
la- 

bles 

Arti- 
cula- 
tion 
Rate 

Filled 
Pauses 

Hesi- 
ta- 

tions 

Onset 
Laten- 

cy 

Dis- 
fluen- 
cies 

Sil- 
ent 

Pauses 

Sum of 
Changes 

Speech Time Pressure: 
Experiment 1 75.76 −6.13 .00 −.09 +.07 −3.61 +.36 +1.12 −8.29 

Experiment 2 70.32 −5.86 −1.17 −1.21 −.60 −.18 −.04 −.04 −9.10 

Navigation: 
Experiment 1 56.58 −1.86 −.66 −2.02 −.29 +1.39 +.12 −.99 −4.31 

Experiment 2 66.51 −4.94 −1.11 −.84 −.54 −.35 −.03 +.44 −7.39 

dispensable; and in a few cases leaving an indicator out evenimproves recognition ac-
curacy. As the final column shows, the sum of the changes that result from leaving
individual indicators out is much smaller than the extent towhich recognition exceeds
the chance level of 50%. This fact shows that the contributions of the indicators are not
simply additive: It may be possible to leave out one indicator without much loss of accu-
racy because the information that it contributes is largelysupplied by other indicators;
but it would not be advisable to leave out all or most of them.

The indicator that it would presumably be most practically useful to omit is DIS-
FLUENCIES: Automatically recognizing linguistic phenomena such as self-corrections,
false starts, and interrupted sentences is considerably more difficult than measuring
(silent or filled) pauses and counting syllables, which is all that is required for the other
indicators.17 As Table 4 shows, the variable DISFLUENCIES adds at best negligible
value, provided that the other indicators are available.

8.3 Discussion

One question concerns the extent to which the results concerning the recognition of re-
source limitations can be generalized to different (and more realistic) settings. Certainly
the specific probabilities of correct recognition are dependent on features of the partic-
ular situation—witness the differences that arose even between these two very similar
experiments. For our analyses, it was certainly helpful that the experimental situation
was highly constrained. Moreover, it was important for the system to know the diffi-
culty of the specific speech task that the user was performing. In an interactive system,
the corresponding information would consist in expectations about the complexity of

17 Portable hardware (with associated software) for detecting and analyzing pauses in speech is
commercially available.



the utterance that the user is likely to produce in any given situation (for example, after
a question about the user’s desired destination).

In sum, much work remains to be done before features in a user’s speech can be used
for the recognition of the resource limitations of a real user of an interactive system; and
even in the long run this possibility will probably be subject to various restrictions—for
example, concerning the predictability of the speech produced by users.

9 Summary of Contributions and Remaining Work

One goal of the present chapter was to provide a framework forthinking about the
prospects for adapting to a user’s cognitive resource limitations in interactive systems
in general and in mobile conversational systems in particular. We discussed why such
adaptation might be worthwhile, what forms it might take, and how the resource limi-
tations might be automatically assessed.

The more specific goal was to explore the prospects of exploiting the user’s speech
as a source of evidence for the recognition of resource limitations. One respect in which
the two experiments presented differ from comparable previous experiments concerns
the number of independent variables examined simultaneously: Whereas almost all pre-
vious studies had examined the effects of just one variable (usually cognitive load), our
experiments orthogonally manipulated cognitive load and speech time pressure, as well
as repeating the experiment with and without distraction from irrelevant speech. The na-
ture of the manipulations makes the experiments somewhat more relevant to scenarios
of mobile conversational interaction than previous experiments were. But the most im-
portant new contribution concerns the results on the diagnostic value of seven specific
features of speech: The evaluation experiments show that these indicators together do
permit a degree of recognition of time pressure and cognitive load that could be useful
in some situations, and they indicate the effects of leavingout individual features that
would be relatively hard to recognize automatically.

Any attempt to apply the ideas and results from this chapter in a particular applica-
tion scenario will necessarily involve considerable further work and creativity. But we
believe that the results presented here will be helpful as a starting point.
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37. Marx, E.: Über die Wirkung von Zeitdruck auf Sprachproduktionsprozesse [The Effect of
Time Pressure on Speech Production Processes]. PhD thesis,University of Münster, Ger-
many (1984)

38. Healey, J., Picard, R.: SmartCar: Detecting driver stress. In: Proceedings of the Fifteenth
International Conference on Pattern Recognition, Barcelona (2000) 4218–4221

39. Müller, C.: Symptome von Zeitdruck und kognitiver Belastung in gesprochener Sprache:
eine experimentelle Untersuchung [Symptoms of time pressure and cognitive load in speech:
An experimental study]. Master’s thesis, Department of Computational Linguistics, Saarland
University, Germany (2001)

40. Kiefer, J.: Auswirkungen von Ablenkung durch gehörte Sprache und eigene Handlungen auf
die Sprachproduktion [Effects on speech production of distraction through overheard speech
and one’s own actions]. Master’s thesis, Department of Psychology, Saarland University,
Germany (2002)

41. Oviatt, S.: Multimodal interactive maps: Designing forhuman performance. Human-
Computer Interaction12 (1997) 93–129

42. Baber, C., Mellor, B.: The effects of workload on speaking: Implications for the design
of speech recognition systems. In: Contemporary Ergonomics: Proceedings of the Annual
Conference of the Ergonomics Society. (1996) 513–517



43. Langley, P.: Elements of Machine Learning. Morgan Kaufmann, San Francisco (1996)
44. Mitchell, T.M.: Machine Learning. McGraw-Hill, Boston(1997)
45. Webb, G., Pazzani, M.J., Billsus, D.: Machine learning for user modeling. User Modeling

and User-Adapted Interaction11 (2001) 19–29
46. Wittig, F., Jameson, A.: Exploiting qualitative knowledge in the learning of conditional

probabilities of Bayesian networks. In Boutilier, C., Goldszmidt, M., eds.: Uncertainty in
Artificial Intelligence: Proceedings of the Sixteenth Conference. Morgan Kaufmann, San
Francisco (2000) 644–652

47. Jameson, A., Wittig, F.: Leveraging data about users in general in the learning of individual
user models. In Nebel, B., ed.: Proceedings of the Seventeenth International Joint Conference
on Artificial Intelligence. Morgan Kaufmann, San Francisco(2001) 1185–1192

48. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. 2nd edn. Prentice-Hall,
Englewood Cliffs, NJ (2003)
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