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Abstract. One of the central questions addressed in the projesibR was that
of how a system can automatically recognize situationadtiemined resource
limitations of its user—in particular, time pressure andmitive load. This chap-
ter summarizes most of the work done iEADY on this topic, presenting as
well some previously unpublished results. We first considiey on-line recog-
nition or resource limitations can be useful by discusshmgways in which a
system might adapt its behavior to perceived resourcedtroits. We then sum-
marize a number of approaches to the recognition problenintwe been taken in
READY and other projects, before focusing on one particular agrathe analy-
sis of features of a user’s speech. In each of two similariycstired experiments,
we created four experimental conditions that varied in seafwhether the user
was (a) required to produce spoken utterances quickly ¢ramot (b) navigating
within a simulated airport terminal or standing still. Iretlecond experiment, ad-
ditional distraction was caused by continuous loudspeakapuncements. The
speech produced by the experimental subjects (32 in eaehimgnt) was coded
in terms of 7 variables. We report on the extent to which ed¢hese variables
was influenced by the subjects’ resource limitations. We &lained dynamic
Bayesian networks on the resulting data in order to see hditheeinformation
in the users’ speech could serve as evidence as to whichtmonthie user had
been in. The results yield information about the accuraey ¢an be attained in
this way and about the diagnostic value of some specific fesinf speech.

1 Introduction

The project RADY (1996—2004) approached the topic of resource-adaptiveitiog
processes from a different angle than most of the other piojepresented in this

* The research described here was supported by the Germarc&e&ieundation (DFG) in its
Collaborative Research Center on Resource-Adaptive @egiirocesses, SFB 378, Projects
B2 (READY) and A2 (VEVIAG). Preparation of this manuscriptasv supported by the
Province of Trento in its targeted research unit Prevolu{imde PsychMM). The research
benefited greatly from preparatory studies by André Bédt(fd]) and from advice by Werner
Tack. Some results concerning Experiment 1 were describadonference paper by Muller
et al. ([2]).



volume: The resources in question were the cognitive ressusf computer users; the
adaptation was done by the system that they were using.

The type of system focused on in the research was mobile ceati@nal systems,
for reasons that will become clear below. The resourceditioins of interest concerned
the user’s available time and working memory.

Since it would be impractical to discuss all of the lines cfaarch in the project
within a single chapter, this chapter will focus on one isthat was addressed in a
number of studies over a period of several years, includimg siudy whose results
have not been published previously: the issue of how a systmnestimate the time
pressure and cognitive load of its user, in particular onlthsis of evidence in the
user’s behavior with the system, such as their speech.

In passing, we will also mention some of the related work | READY project,
as well as other related research. Other aspects of therchseaReADY, especially
concerning the use of probabilistic methods for user madelare discussed in the
chapter by Wittig in this volume.

1.1 Reasons for Variation in Cognitive Load and Time Pressu

One salient issue in the design of mobile conversationalfates is the role of situ-
ationally determinedesource limitations of the user—specifically, time pressure and
cognitive load.

Compared with the users of stationary interactive systenaodile users are more
likely to be experiencing environmentally induced cogtioad. The uself’s atten-
tion to the environment may be due simply to distracting stirm the environment
(as wheri/ is being driven in a taxicab while using the syst®® but oftenz/ will
be attending actively to the environment while performietians in it (e.g., handling
objects or navigating through the environment). The tengehusers to attend to their
environment and to multitask may be even greater with caatemal mobile systems
than with those that do not use speech as a communicatiomehd®ecause of the
largely eyes-free and hands-free character of speech.

Although users of stationary systems can of course alsoriexyme time pressure,
especially acute time pressure can arise when a convarahitiberface is used during
interaction with other persons or the environment. For edlama driver may want to
complete a task while waiting at a stoplight; or a user maynberacting with another
person who herself has little time available.

Research on how designers of technical devices can takisitally determined
resource limitations into account has a long tradition ia field of engineering psy-
chology (see, e.g., [3]). In the airplane cockpit, the awibite, or the nuclear power
plant, the importance of factors like mental load and timespure is too obvious to
be overlooked. The research of this sort that seems mosttigirelevant to mobile
conversational systems is research on in-car systemsifersi(see, e.g., [4]; [5]). The
advent of conversational systems for drivers has been atetivargely by the perceived
fundamental compatibility of speech with the task of driyi{see, e.g., [6]).

5 To simplify exposition, we will use the symbol$ and/ to denote a system and its user,
respectively.



Would you like to do
anything on the way?

[ Get something to eat
[ et something to read

[ Look for a present

Well, uh, I guess it's
about time for me to
head on off to ...

Gate C38 ....

Fig. 1. Example of how a user’s current resource limitations cah foaldifferent system re-
sponses. (Each of the two screens shown is a possible syssponse to the user’s input utter-
ance.)

With other types of mobile conversational interface, reste@n the role of user
resource limitations is still in a relatively early stagaut® would be inappropriate to
neglect them. Consider, for concreteness, the example ofecsational system that
serves as an assistant to a traveler in a large airport, aimgpiestions and providing
guidance. Figure 1 illustrates how quite different systeshdviors may be appropriate
given different user resource limitations.

1.2 Why Automatic Adaptation?

There are, of course, straightforward ways of ensuringdtsystem shows appropriate
behaviors in cases like this. First, the user could be alibtwespecify explicitly what
type of system response they prefer—for example, by innlmiti the spoken query the
request for a response that contains only the minimallysssog information. But espe-
cially when the user’s resources are limited, such exgjmétcification may require too
much mental effort and/or time. Second, the designers ofystem can try to ensure
that its basic design makes it highly usable even given seesource limitations—for
example, by providing only simple displays such as the lowver in Figure 1. But a
design that is well suited for one particular combinationssource limitations may not
be well suited to a different combination, or to a situatiemiich there are no signifi-
cant limitations. For example, the minimalistic output ba tower screen in Figure 1 is
unlikely to be optimal for the second user. And even the uggegencing time pressure
might prefer a different type of display if he is not also esiprcing cognitive load.
One possible approach to this dilemmais to give the systene sapability to rec-
ognize the user’s resource limitations automatically anddapt to them with some
degree of autonomy. In the next section, we will give soméherexamples of how
this type of adaptation can be appropriate. Section 3 wélhtbonsider the first ques-



tion that this approach raises—How can a system automigticatognize resource
limitations?—qgiving an overview of possible methods. Agstithis general background,
the remaining major sections of the paper will present $igeempirical results and

analyses concerning the role of the user’s speech as a soluesgdence on which

adaptation to resource limitations can be based.

2 Possible Forms of Adaptation

Let us suppose in this section that a mobile conversatioteifaceS is capable of
making some reasonably accurate estimate of the idseresource limitations at a
given moment. How migh§ make use of this assessment to generate more appropriate
system behavior? If there are no plausible answers to tastopn, there is little point

in investigating techniques for assessing resource liiita.

2.1 Interruption of Communication

Perhaps the simplest form of adaptation is§osimply to stop communicating wittl
whensS perceives resource limitations. For example, [5] dessréoprototype conver-
sational in-car navigation system that interrupts its shemutput whenever the driver
applies the brakes. The goal is that in critical traffic ditwas,i/ should be able to de-
vote their full attention to the driving task. In effect, tHepression of the brake pedal
is being interpreted as an indicator of high cognitive load.

2.2 Timing and Form of Notifications

Some conversational systems spontaneously present atitifis to users. For example,
the wearable WMADIC RADIO ([7]) transmits audio messages (such as voice mail) to
the user in a context-sensitive fashion. AlthougbNwaDic RADIO does not explicitly
modell{’s cognitive load or time pressure, it does take into accoelated factors, such
as whethet/ is currently interacting witks and whethet/ is in a meeting. In addition
to postponing notifications, the system can choose fromrakfams of notification
that have different degrees of obtrusiveness.

Other notification systems that assess the user’s context been presented by
Horvitz and colleagues (see, e.g., [8]; [9]). These systaaiee use of decision-theoretic
methods to weigh the benefits of a notification against thes¢esy., distraction). Here
again, cognitive load and time pressure are not modeledioitipl

2.3 Dialog Strategy

Many conversational systems are capable of switching ketwiiferent dialog styles
depending on the current state of the interaction. For el@fi¥] describes TOOT, a
prototype spoken dialog system for retrieving online tehedules. TOOT sometimes
applies a highly conservative dialog strategy in which gaielce of required informa-
tion (e.g., destination, place of departure, time of depejtis elicited from the user
through a focused question and then confirmed through a geg+astion. With less



conservative strategieS,asks more open questions that alldwo specify two or more
pieces of information at a time (e.qg., “How may | help you®&decides which strategy
to use on the basis of features of the current dialog, sudheasyistem’s confidence in
the success of its own speech recognition. The main mativdtere is to allow users
whose speech can be recognized relatively well to proceeddi the dialog quickly,
while still accommodating users whose speech is problemBitit analogous changes
in dialog strategy could be based on assessments of cagloiéid and/or time pressure:
The more conservative strategies may be especially agptefior users who are cur-
rently distracted by the environment or by another task redethey may be especially
frustrating for users under time pressure.

Such hypotheses about the suitability of particular dialtydes for particular con-
figurations of resource limitations of course require a thgoal and empirical founda-
tion. An effort along these lines was made in a different biieesearch in the RADY
project ([11]): In an experimental setting, each of 24 satgeised a mouse to carry
out spoken instructions regarding a graphical control péng., “SetX to 3, setM to
1, setV to 4”). In half of the trials, the instructions for a given pdrverebundled, as
in the example just given; in the other half of the trialsytinere presentegepwise:
After each single instruction (e.g., “S¥tto 3"), the system waited until the user had
completed the instruction and clicked on a confirmationdwjtthen the system pre-
sented the next individual instruction. An orthogonal npaiftion induced cognitive
load in half of the trials through a secondary task that nesglisubjects to attend to
color changes in one part of the screen.

When instructions were presented bundled, subjects oftterarrors when a se-
quence comprised 3 or 4 instructions and when they wereadtstl by a secondary
task. By contrast, the stepwise presentation of instrostiwas shown to be a slow but
safe strategy, like the conservative dialog strategiesudised above: Subjects made
very few errors even in the most difficult conditions. Givée tassumption that users
attach some value to both rapid task completion and the axo&lof errors, it can be
shown that stepwise presentation is on the whole relatiseitable wheri/ is expe-
riencing cognitive load; but that the system’s choice betwthe two modes should
also be based on the length of the instruction sequence anelgtive importance of
execution speed and error avoidance. Although it was cdeduie an artificial environ-
ment, this study empirically confirms the intuition thaffdient dialog strategies can be
suitable under different configurations of resource litijtas.

2.4 Other Forms of Adaptation to Resource Limitations

Several other ways in which a conversational interface tréglapt to resource limi-
tations should be mentioned briefly for completeness, atthahey so far have been
instantiated less clearly than the possibilities discdisgmve.

On the basis of perceived high cognitive load, a system ndgganhge its behavior
as follows:

— Present a smaller amount of optional information that isstrattly required for the
performance o#{’s system-related task.



For example, the airport assistant introduced above mtgtt ® basic navigation
instructions while guiding/ from one location to another, leaving out information
about airport facilities passed along the way.

— Present information in a style that is optimized for easyarathnding, at the ex-
pense of other criteria (such as elegance or conciseness).
Some stylistic features (e.g., simplicity and explicits)eare commonly recom-
mended for texts that are typically read or heard by userscahoot be expected
to be paying full attention, such as error messages and baglp (see, e.g., [3],
chap. 6). The novel idea in an adaptive system is that theeddgrwhich such el-
ements should be included should depend on the perceiveldbievognitive load,
because of the tradeoffs with other criteria.

— Adapt the interface in such a way as to prevent errors thatypreal of high cog-
nitive load.
A number of categories adkpert dlip are discussed by Norman ([12]), along with
design remedies. Each such remedy (e.g., making objectsvisarally distinctive;
asking for confirmation) tends to have some drawbacks. Sirpert slips are es-
pecially likely whenl/ is environmentally distracted, some remedies may become
worthwhile under high cognitive load even if their drawbadutweigh their ad-
vantages given low cognitive load.

Analogous suitable responses to time pressure might iachelfollowing:

— Present concrete instructions that describe specificregtas opposed to encour-
aging! to discover procedures on her own or to form a robust mentdkinaf the
system.

— Optimize messages for speed of presentation and/or coepsin, if necessary at
the expense of other criteria.

For example, synthesized speech could be played at a faségrewen though it
might sound less pleasant and require more effort to uratedst

3 Ways of Recognizing Resource Limitations

Given that there appears to be some potential benefit to timenatic recognition of
a user’s resource limitations, on the basis of what evideacea system achieve such
recognition?

3.1 Recognizing Likely Causes of Resource Limitations

A system may be able to recognize factors that tend to giegeisesource limitations
in users. Any evidence that suggests the presence of suchoa tanstitutes indirect
evidence for the corresponding resource limitation. TAldézes some examples of the
many possibilities.



Table 1. Examples of ways in which an adaptive system might obtaiormétion about causes
of a user’s resource limitations.

Cause of the resource limitation Evidence of the cause that may be accessible
to the adaptive system

Cognitive load

Difficult driving situation Information from navigation system
Use of a cognitively demanding interactive Information about applications currently
application being used byu

Distracting noise and/or events in the Sensing of the environment through
environment microphones or cameras

Time pressure

Requirement for fast task completion S's access to information about
imposed by the environment (e.g., flight for environment-imposed constraints (e.g.,
which boarding is about to close) boarding schedules)

Requirement for fast response imposed by S's access to its own processing history

itself (e.g., instruction by to perform a
given action quickly)

3.2 Physiological Indicators

Within engineering psychology, there is a long traditiorr@earch on physiological
measures of cognitive load (see, e.g., [13]; [14]). Suchsuess have mostly been ap-
plied in laboratory or field studies, but there is some paabfar using them for on-line
recognition of and adaptation to cognitive load. Two re&klii promising measures can
serve as examples:

Heart Rate Variability Heart rate variability (see, e.g., [15]) tends to decreaitle w
increasing overall mental workload. In a study somewhatlairm spirit to the one to
be described in Sections 6, Rowe et al. ([15]) investigalbedpotential of heart rate
variability to serve as in index of cognitive load, not ontyr the purpose of studying
the workload induced by a given system but also for the purpballowing automatic
adaptation. While this study did not yet yield clear conidas about the value of heart
rate variability for supporting on-line adaptation, thag duggest that further investi-
gation of this possibility is warranted. Because of the nieedttach electrodes to the
user’s body, heart rate variability does not fit especia#iyunally into the scenarios of
mobile conversational interfaces; but perhaps ultimatiedynecessary sensors can be
worn in an unobtrusive way and transmit data to a mobile @evic

Pupil Diameter The diameter of a person’s pupil has likewise been shownripsyes-
tematically as a function of mental load—although it is @tsongly affected by other
factors, such as ambient illumination and the distance @b being fixated (see, e.g.,
[16]). These other factors would be especially problemaiib mobile systems. Pupil
diameter can be measured with eye tracking equipment. W4tloeary system use, a



remote eye tracker can be used that does not have to be atticttee user's head—

although the user is required to sit relatively still. Forbite use, a head-mounted eye
tracker is required; for the time being, therefore, thisetyph measurement must be re-
stricted to research studies, as opposed to normal systemsiss the case with heart
rate variability, studies are required to determine whe#rsl in what situations this

type of information can play a useful role in a system thaipésléo a user’s resource
limitations.

A study conducted within RADY illustrated that that success is not guaranteed even
in apparently optimal circumstances: In an experimentuflehis found no difference
in the pupil diameter of subjects when they were reading easy vs. very difficult
texts on a computer screen (see, e.g., [17], [18]). A simidgyative result was obtained
by Igbal et al. ([19]) on a simlar reading task, but these samthors obtained good
accuracy results on different types of tasks.

Other Indices Other measures, which seem to have less immediate pronisisdo
in mobile systems, include those that concern aspects of acdivity (for which, for
example, Schultheis found some promising results in themxgnt just mentioned;
see also [20] for more recent and more promising resultsyesplratory activity.

Comments One general advantage of physiological measures is thariargl a con-
tinuous stream of data is received without the need for teetogproduce any particular
behavior solely for diagnostic purposes. Some measureb,asiheart rate variability
and pupil diameter, respond quickly enough to changes imitieg load to make on-
line adaptation in principle feasible. A general drawbazlkhie need for specialized
sensors, which users may find uncomfortable or restrictive.

3.3 Evidence in the User’s Behavior With the System

A different general class of evidence comprises informmagibout the user’s behavior
in interacting with the system—for examplé's use of manual input devices df's
speech. One positive aspect of these types of evidencetispghaial sensing devices
may be unnecessary, because the information efténsough the normal input chan-
nels. Moreover{’s input behavior (e.g., the fact thatis making manual input errors
or producing disfluent speech) may be of importance in its dgit—that is, a fact
thatS might adapt to or take into account in its processing.

Evidence in the User’'s Motor Behavior Aspects of a user’s motor behavior (e.g.,
tapping or dragging on a touchscreen with a stylus) couldiimcfple reveal something
about a user’s resource limitations. A good deal of resdaastaccumulated concerning
features of motor behavior that typically arise under cbgmload and/or time pressure.
Within the READY project, Lindmark ([21]) surveyed these relationships sugigested
how they might be used for automatic recognition of resolincéations. For example,
time pressure tends to lead to an increase in the stiffnesgefson’s limbs, which in
turn tends to cause actions like tapping on the screen to therpeed with relatively



high force ([22]); accordingly, when a given user employgsenhan the usual amount
of force, this fact can be seen as suggestive evidence ofptiessure. Cognitive load
tends to increase the likelihood of expert slips (e.g., dttigg to perform an intended
action; tapping on an icon that looks similar to the intended; cf. [12]); if the system
can recognize such an error as having been made—in gendral tniwial task—it
can use the error as evidence that suggests cognitive lamde $ehaviors (such as
the two just mentioned as examples) are made more likely therecognitive load
or time pressure. Therefore, any mechanism for interpyetirch evidence will have
to have some appropriate mechanism for adjusting its hgsethconcerning both of
these resource limitations on the basis of the same evidéitbeugh the emphasis in
the present chapter is not on inference mechanisms, onilgosgch mechanism will
be discussed in connection with the analyses in Sectiond 8an

Evidence in the User's SpeechWith conversational interfaces, an especially natural
type of indicator of resource limitations comprises featuof the user’s speech. Be-
causeS needs to procedd’s speech anyway, there must already exist some type of
microphone for sensing the speech and some software foyznglit. Therefore, as
with motor indicators, in the best case the only further nements concern software
for identifying and interpreting the indicators. The prests for recognizing resource
limitations on the basis of this type of indicator will be exiaed in detail starting in
Section 4.

4 Experiments: Introduction

As was argued in 3.3, features of a user's speech appear énaseespects to be a
promising source of information about a user’s cognitiveorgce limitations. But an
obvious first question is: Is there enough information adé in a user's speech to
support a reasonably reliable recognition of these resdumitations?

4.1 Earlier Research on Speech Indicators

Before initiating a time-consuming experimental study, sueveyed previously con-
ducted studies of relations between cognitive load or timesgure and features of
speect?.

Distinction From Other Topics The idea of making inferences about a speaker on
the basis of features of their speech is by no means new. @iedbhigh practical
importance is the recognition of emotion on the basis of cpésee, e.g., [34]). Part
of this literature focuses on the effects of stress (see, B§]). Stress is related to
cognitive load and time pressure, in that these resourdgations can be both causes
and consequences of stress. But there are also essen@atsaspthe concept airess
that are not necessarily associated with cognitive loadhoe pressure: physiological

8 Since this survey was made in 1998, it covered work throughette 1990s.



Table 2.Overview of the most important indicators of cognitive Idadnd in some early studies.

Indicator Direction* Tally** Example Study

Output rate

Articulation rate - 77 Lazarus—Mainka and Arnold
(1987)

Speech rate - 117 Kowal and O’Connell (1987)

Pauses

Onset latency (duration) +/(-) 9/11  Greene (1984)

Silent pauses (number) + 4/5 Rummer (1996), Exp. 1 and 2

Silent pauses (duration, all) + 6/8 Goldman-Eisler (1968)

Siller)1t pauses (duration, intraphrasal + 2/2 Butterworth (1980)

only

Filled pauses (number) + 4/6 Wiese (1983)

Filled pauses (duration) + 1/2 Grosjean and Deschamps (1973)

Indicatorsinvolving output quality

Repetitions (number) + 5/6 Deese (1980), Exp. 2

Sentence fragments (number) + 4/5 Rummer (1996), Exp. 2

False starts (number) + 2/4 Rofl3nagel (1995)

Self-corrections (number)*** +,-,0 2,1,4 Oviatt (1995)

*"+" means that the measure was generally found to increase under conditions of high cognitive
load; "-" means the opposite.

** "m/n" means that ofi relevant studiesn found the tendency indicated in the second column. (In
most cases the tendency was statistically significant.)

*** Results concerning self-corrections show an inconsistent pattern.

arousal and stressors such as noise or high acceleratid8](athap. 12). We believe

that it can be important to be able to adapt to cognitive loatimoe pressure even
when these factors are not present—for example, when thésyserforming two tasks

at once and would like to proceed quickly but is not especiedincerned about the
consequences of failure. We therefore focus here on presgioulies that did not involve
especially stressful situations. (A much more detailed emprehensive analysis of
studies like these is given by [1].)

Effects of Cognitive Load With regard to cognitive load, a number of features of
speech have been investigated in multiple studies; herisepitssible to draw some
fairly general conclusions concerning their dependenasgnitive load. Table 2 sum-
marizes the most important of these indicators.

Effects of Time Pressure Perhaps surprisingly, the number of results that can be
extracted from previous studies concerning the effectsredf pressure is much smaller



than the number for cognitive load. One of the more obvioymliyeses is that people
speak more quickly under time pressure. This hypothesisomairmed in a study
by Kelley and Stone ([36]), and a study by Marx ([37]) showeaharginal tendency
of the same sort. This same study by Marx revealed a statligtisignificantly greater
tendency of speakers who had been put under time pressegdatiparts of utterances.

5 Experimental Method

5.1 Purpose of Experiments

The goals of our two experiments were (a) to fill the gap in kieolge concerning the
impact of time pressure on features of speech; (b) to examitign a single setting
a large number of features that had previously mostly bastiexdt separately; and (c)
to obtain raw data that could be used to determine how welhitivg load and time
pressure can be recognized on the basis of speech.

We required some way of capturing users’ speech while thealject to known
resource limitations. In principle it would be possible tapture the speech in fairly
natural conditions, if we could confidently assess the nesolimitations in these con-
ditions. Healy and Picard ([38]) applied this strategy irithstudy of physiological
assessment of driver stress: Subjects were required te aiong a route that included
a number of events which had predictable stress levels.

We chose an experimental setting for our studies, so as tblbd@exert greater
control over both the independent variables and the nafutespeech utterances.

We conducted two experiments, separated by about 1 yeamnén Experiment 2 can
be seen as a replication and extension of Experiment 1. Fareteness, Experiment 1
will be described separately first.

5.2 Method for Experiment 1

Materials The experimental environment simulated a situation in Whicser is walk-
ing through a crowded airport terminal while asking questito a mobile assistance
system via speech (see Figure 2). In each of 80 trials, arpietppeared in the upper
right-hand corner of the screen. On the basis of each pidtueesubject was to ask a
question, after motivating it with an introductory sentenieor example, for the picture
shown in Figure 2, a subject might say “I'm getting thirsgthere . . . will it be possible
to get a beer on the plane?”.

Design Two independent variables were manipulated orthogonally:

— NAVIGATION: whether or not the subject was required to move an icon on the

screen through the depicted terminal to an assigned d#etiray pressing arrow
keys, while avoiding obstacles and remembering a gate nutinaecomprised five
digits and one letter. When navigation was not requiredstitgect could ignore
the depicted terminal and concentrate on the generatiopprbariate utterances
in response to the pictures.
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Fig. 2. Environment used in the experiments, with a typical pietiostimulus.

The navigation task was designed to induce the sort cogrlitizd that would be
induced by a nonverbal task performed by the user of a mopdtes while in-
teracting with the system. Walking around an airport woudddme example of
such a task; but there are of course differences betweera{ing in a real three-
dimensional space and (b) moving an abstract figure withimadimensional com-
puter screen. We do not refer to this condition as the “cagnlbad” condition
because it is not known to what extent the task actually indwognitive load in
any given subject.

— SPEeCH TIME PRESSURE whether the subject was induced by instructions and
rewards (a) to finish each utterance as quickly as possib{@)orto create an
especially clear and comprehensible utterance, with@atrceto time.

More specifically, in the condition with time pressure, thibject was told that his
speech would be interpreted by an experienced airporttassisho was in great
demand because of her extensive knowledge. Utterancegatirto this assistant
were to be completed quickly, so that she could go on to astist airport visitors.
In the condition without time pressure, subjects were teditheir utterances to a
new, inexperienced airport assistant. In this conditiathimg was said about time
limitations; the emphasis was to be on ensuring that thistass understood the
utterances.

The instructions concerningP&8ECHTIME PRESSUREMake it almost inevitable for
some differences in the speech of the subjects to appeanaxtoh of this variable.
Still, there are empirical questions concerning (a) thé@aar forms that the utterances
take in the two conditions (e.g., whether, undee&CHTIME PRESSURE subjects will
articulate more quickly, use fewer words, and/or think lesfore starting to speak);
and (b) whether the differences will be large enough to aboeurate discrimination
between the two conditions.



We call this second variableP8ECHTIME PRESSUREtO highlight its differences
from other possible forms of time pressure. For examplep#éson’s goal is the quick
completion of some larger task (e.g., getting to the depargate), they may or may
not try to save time by completing individual utterancesclyi. But time pressure
with regard to utterance completion can arise for varioleeteasons as well—for
example, because of real or imagined time limitations onpée of the listener or
system; because of a task that the user is performing thatdemly brief intervals free
for speaking; or because of a high cost of utterances to thaksp, as in the case of
an expensive communication channel. Any attempt to havetesyadapt to SEECH
TIME PRESSUREIN a given setting should take into account the likely readon this
form of time pressure that might apply in that setting.

Procedure After an extensive introduction to the scenario, the emrnent, and the
4 (2 x 2) conditions, each subject dealt with 4 blocks of trials,hehtck involving
20 pictures distributed over 4 destinations. Each block prasented in one of the 4
conditions, the order being varied across subjects aqugtdistandard procedures.

Subjects The 32 subjects, students at Saarland University, werefpaitheir partic-
ipation. An extra reward was given to one of the participart® most successfully
followed the instructions regarding the time pressure malation.

Coding and Rating of SpeechEach of the 256032 x 80) utterances was transliterated
and coded with respect to a wide range of features, includimgpst all of those that
had been included in previous published studies. On thes ldghe transliterations
(minus the coding symbols), four independent raters sahtedtimulus pictures into
5 categories in terms of the complexity of the responsesttiest tended to call for.
An aggregation of these ratings was later used to contralhferdifferent degrees of
difficulty of the speech tasks invoked by the pictures.

In this chapter, we report results only for a subset of semditators which, on the
basis of the results, seem most promising as indicators grfittee load and/or time
pressure-

— NUMBER OF SYLLABLES: The number of syllables in the utterance.

— ARTICULATION RATE: The number of syllables articulated per second of speaking
time, after elimination of the time for measurable sileniges.

— SILENT Pauskes The total duration of the silent pauses in the utterangaressed
relative to the length of the utterance in words (to take axtoount the fact that
longer utterances offer more opportunities for pausesacitordance with usual
practice, a silent pause is defined as a silence within tleeanite that lasts for at
least 200 ms.

— FILLED Pauses The corresponding measure for filled pauses (e.g., “Uhh”).

— HEesITATIONS. The number of silences with a duration of less than 200 manag
relative to the length of the utterance in words.

" Much more detailed reports covering all of the variablesgiwven by Miiller ([39], for Exper-
iment 1) and by Kiefer ([40], for Experiment 2).
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Fig. 3. Visualization of the eight conditions realized in Experirtel (left) and 2 (right). (In the
experiments, the time pressure concerned specificallyrtieedvailable to generate spoken input
to the mobile system.)

— ONSET LATENCY: The length of the time interval between the presentaticthef
pictorial stimulus and the first syllable spoken by the sahje

— DISFLUENCIES The logical disjunction of several binary variables, eattwhich
indexes one type of speech disfluency: self-correctionshivg either syntax or
content; false starts; or interrupting speech in the middle sentence or a word.
Although each of these variables has been treated as a tegapgndent variable
in some previous studies, they are grouped together heaeibeeach phenomenon
in question occurs too infrequently in our data to give rizatatistically reliable
effects. (Filled and silent pauses, which may also be reghad disfluencies, are
not counted here, because they are treated as separatdesjia

5.3 Method for Experiment 2

The method for Experiment 2 was identical to that for Experitnl, with one excep-
tion: During all of the time in which a subject was performiig experimental tasks,
they heard through a headphone prerecorded loudspeakeurssements of the sort
that travelers typically hear at airport terminals (comdaeg matters such as flight depar-
tures, gate changes, missing persons, and security wajnifigese German-language
announcements, which had been recorded at Frankfurt Ajnwere arranged digitally
so that there were only minimal pauses between announcenf@mrtour present pur-
poses, the function of these announcements was to add divadb$ource of cognitive
load—one which, in contrast to the navigation task, seerketylIto interfere more di-
rectly with the process of speech production, because wéitsal nature.

Figure 3 gives a graphical overview of the eight specific dmuk that were real-
ized in the two experiments. Our focus will be on the effeltt bccurred within each
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experiment. Although it is of some theoretical interestée fow the announcements
affected speech production, in the present chapter we wfilpay much attention to a
comparison of the results with and without announcemenis.i®ason is that there is
little practical interest attached to the question of wkethsystem can recognize, on the
basis of a user’s speech, whether that user is being disttagtirrelevant speech from
the environment: I£/'s speech can be picked up by a microphone, then presumably th
presence of ambient speech could be directly detectedeimitrophone as well. Also,
from a methodological point of view, we must be cautious ieiipreting specific dif-
ferences between the results of Experiments 1 and 2: Everglthoonsiderable effort
was made to replicate the method of Experiment 1, for pralcteasons Experiment 2
was conducted by a different experimenter and the uttesaweee transliterated by a
differentresearcher. Moreover, the subjects were notssacdy sampled from the same
population. It is therefore most realistic to focus on theust results which are found
in both of the experiments despite the differences betweem

6 Experimental Results

6.1 Statistical Analyses

For each of the indicators analyzed here, a three-way d@nalyvariance (ANOVA)
was conducted, with two within-subject variablesazATION and SPEECH TIME
PRESSURB and one between-subject variableN®oOUNCEMENTS.2 In accordance

8 Before the ANOVAs were conducted, multivariate analysesasfance had been conducted
with a view to ensuring against capitalizing on chance whté telatively large number of
ANOVAs; these MANOVAs demonstrated that the interpretatad the ANOVAs reported
here is justified.



with the considerations just mentioned, we will interpratyothe main effects of the
within-subject variables and the interactions betweemthe

6.2 Number of Syllables

Figure 4 shows the means for the variableNNSER OF SyLLABLES for each of the
eight conditions. The ANOVA confirms that there is a highlgrsficant main effect
of SPEECH TIME PRESSURE(F'(1,63) = 97.573,p < 0.001): Not surprisingly, the
instruction to finish each utterance quickly led to a muchlemaumber of syllables
per utterance.

Somewhat less obviously, the requirement to navigate lexbnoewhat shorter ut-
terances £ (1,63) = 8.295,p < 0.01). Although there is no significant interaction
between the two independent variables, the graphs sugdassibly, that the differ-
ence arises mainly in the condition without time pressuraylich the subjects were
less ambitious with regard to the goal of producing unamtig high-quality utter-
ances. When they were under time pressure, they were tryikgep their utterances
short even when not navigating, so there was little roomHemtavigation task to cause
further reduction in their length.

The results concerningMMBER OF SYLLABLES are novel for the simple reason
that previous studies have not in general included uttersangth as a dependent vari-
able. A likely reason for this omission is that utterancegtbrhas diagnostic signif-
icance only relative to a particular speech task: The faat ¢huser has produced a
15-syllable utterance in itself says little about her ctigaistate; but if we know that
the utterance was produced as an answer to a straightfop@ando question, it may
be significant. We will see in 7.1 how the properties of theeunir speech task can be
taken into account in the interpretation of speech indisato

6.3 Articulation Rate

As can be seen in Figure 5, on the average subjects producedsyiables per second
when they were under time pressure than when they werert{at (3) = 47.726,p <
0.001). Though this result is intuitively plausible, it is not lieglly necessary, given
that there are other ways of coping with time pressure (&). Zhere is also a tendency
to articulate less quickly when navigating (see the sloptheftwo lines;F'(1,63) =
4.355, p < 0.05), as has been reported in a number of previous studies (@& Za This
effect is stronger under time pressure; this interactifl(63) = 5.565,p < 0.05) is
understandable in that, under time pressure, subjectstarelating relatively fast, so
there is more room for them to slow down.

The fact that the two main effects and the interaction aréssitally significant,
even though the differences involvingrRAICULATION RATE do not appear visually
striking in the graphs, testifies to the precision and siitgibf A RTICULATION RATE
as an index.

6.4 Silent Pauses

The results for &ENT PAUSES (Figure 6) are complex. It is easily understandable
that there is a highly significant main effect oFE&ECHTIME PRESSURE(F'(1,63) =
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27.689, p < 0.001): Without such pressure, subjects have no motivation te See by
avoiding pauses; perhaps even more importantly, they at&vated to produce high-
quality utterances, which presumably tend to call for mameetul planning, which
can be accomplished during pauses. In particular, we hawad seen (Figure 4) that
utterances produced without time pressure tend to be cenadily longer; and as was
shown by Oviatt ([41]), longer utterances tend to be assediaith a relatively high
number of disfluencies such as silent pauses.
Regarding the effects of WIGATION, previous studies (cf. Table 2) had shown that

a concurrent task tends to increase the number and/or lehgillent pauses—plausibly
enough, since a concurrent task demands the subjectdliatter least intermittently.
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This pattern is in fact seen in the upward slope of three ofitlie lines in Figure 6.
The reason why there is no significant overall main effect afIdATION is that a
sharp decrease occurs in Experiment 1 when there is no tiessyme. This decline is
understandable when we recall that, without time pressiieeneed to navigate leads to
shorter utterances (Figure 4). In other words, subjectptation to the navigation task
proves more important in this case than the tendency ofdisis to increase cognitive
load.

This specific result reminds us of a general point that ismoémphasized in re-
search on the effects of resource limitations on behavew,(s.g., [3], chap. 11; [42]).
Resource limitations do not in general have a direct andaidable impact on perfor-
mance; typically, a person has some freedom to decide howabudth them.

6.5 Filled Pauses

With the indicator FLLED PAUSES (Figure 7), the most striking difference between
the two experiments appears. In Experiment 1 we see an effachad been found
in previous studies (cf. Table 2): an increase in filled pausben a concurrent task
is added. With the addition of the loudspeaker announcesrierExperiment 2, this
relatively subtle effect is reduced as the total duratiofilefd pauses increases by a
factor of about 3; overall, there is no significant main efffdNAvIGATION . Although

it is plausible that subjects generate more filled pausesi@rao block out the distract-
ing loudspeaker announcements, we should not attach muigihtwe this difference
between the experiments, for the reasons given in 5.3.

6.6 Hesitations

The very short pauses counted by the variab#sHATIONS (Figure 8) occur signifi-
cantly less frequently when the subject is navigatifgl( 63) = 8.407,p < 0.01); a
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possible explanation for this phenomenon is in terms of éaeiction in the complexity

of utterances when the subject is navigating (cf. Sectidh &his result is novel in that

virtually no previous studies have looked at hesitations aependent variable. The
apparent effect of time pressure in the graphs is not statilst reliable, but note that it

would be consistent with the results folLENT PAUSES (6.4).

6.7 Onset Latency

Regarding QIseT LATENCY (Figure 9), we see a highly significant tendency for sub-
jects to begin with the production of their utterance soomeen they have been in-



= No Time Pressure
—————— Time Pressure

No Announcements Announcements

16 16

14 14 ==
= L—=-—" -
S 12 ] 124
° ---"

_ -

S 10 T o= 10 +
e
[%]
8 8+ 8
&)
S 6 6 |
=
=
8 4 4
a

2 2

0 0

No  Navigation? Y N°  Navigation?  YeS

Fig. 10. Means for the variable BFLUENCIESIn the four conditions of Experiment 1 (left) and
Experiment 2 (right).

structed to get finished with the utterance quickiy({,63) = 95.841,p < 0.001).

In addition to the obvious explanation that they are simplofving instructions, this
effect may be due in part to the lower complexity of the uttess produced under
time pressure (cf. 6.2), which reduces the amount of plaprequired. The tendency
(suggested by the lack of parallelism in the lines of eaciplgréor ONSET LATENCY

to be affected more by N/IGATION when there is BEECH TIME PRESSUREIS con-
firmed by a significant statistical interaction between thve tndependent variables
(F(1,63) = 8.079,p < 0.05). The positive impact of cognitive load on onset latency
that was found in many previous studies (see Table 2) is moidtere to a statistically
significant degree, although there is a visible tendenclgandirection.

6.8 Disfluencies

Although each of the specific types of disfluency summarizethbé variable DsFLU-
ENCIESOccurs too infrequently to yield statistically significalifferences as a function
of the independent variables, a robust tendency does afipetie disjunction of the
specific variables: As can be seen in Figure 1GHDUENCIESincrease when the sub-
ject is required to navigateF((1,63) = 8.403,p < 0.01, as was shown in previous
studies (cf. Table 2). The other tendency that is appareheifigure—for disfluencies
to increase when there is no time pressure—is not staligticdiable in these data,
though it would be consistent with the greater complexityttérances generated when
there is no time pressure (cf. [41]).

6.9 Discussion

We have seen that, with the exception of (FED PAUSES, each of the dependent vari-
ables discussed here shows one statistically reliabletedfeime pressure and/or the



navigation task. As was mentioned above, some of thesetsesylicate and extend
findings from previous experimental research, while othlygetd new information—
especially those that concern the independent variableeeESH TIME PRESSURE
and its interactions with the presence of a concurrent task.

Taken together, these results suggest that observatibesd variables in a person’s
speech might allow a system to infer that person’s curresdueece limitations. But the
question of the extent to which such recognition is possthi®t directly addressed by
the conventional analyses that we have presented so faatit&tally significant result
in an ANOVA shows that the result is unlikely to have occutvtedause of chance alone,
but it does not guarantee that the dependent variable irtiqnesill have diagnostic
value. To determine the prospects for recognizing resdimggations, we will apply
quite different methods in the following two sections.

7 Learning of User Models

If we want to create a system that recognizes the resourdeatioms of its users on the
basis of their speech, we need to take two main steps:

1. Use machine learning methods to create some sort of meldéhg resource limi-
tations to speech indicators, using data such as thoses# thgperiments (see the
rest of this section).

2. Apply this model to the data of each user, using the featofeheir speech as
evidence (Section 8).

7.1 Bayesian Network Structure

Regarding Step 1: There exists a great variety of machinmaileatechniques for clas-

sifying cases on the basis of their features, including supgector machines, neural
networks, decision trees, and case-based reas8mirngystem that aims to recognize
dynamically changing resource limitations imposes théfahg requirements on its

learning and inference methods:

— The method should make it possible to interpret evidence fyoalitatively dif-
ferent sources (cf. Section 3), ranging from likely caudagsource limitations to
various types of indicator.

— The method should do justice to the fact that, while resolincéations change
over time, the cognitive state of a user at any one momentinvithost cases be
similar to his or her state at the previous moment.

— The modeling method should yield a more or less interpretatddel: Especially
when several qualitatively different types of evidencelzging used, it should be
possible, by inspection of the model, to understand thédtiomships to one an-
other (cf. [46]). Otherwise, it may be difficult to adapt thetmod to scenarios that
involve different types of evidence.

° For general treatments of machine learning techniquesj483g[44]. Applications of such
techniques to the modeling of computer users are discua4d8]i
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— It should be possible to acquire a model of each individuat,uso as to be able
to take into account individual differences in the ways inichhresource limita-
tions are reflected in speech. But user model acquisitionldtadso be able to take
advantage of data acquired from users other than the cursentso that learning
does not have to begin from scratch with each new user (cf).[47

Among the learning and inference techniques that best fitdbinbination of re-
quirements are those that are associated with Bayesiamriet(BNs):°

The BN structure employed in the present study is illusttateFigure 11. (The
nodes in the lower box labelediMe SLICE 2 can be ignored for the moment.) We
will first consider its qualitative structure; the quantiita modeling of the relationships
among the variables represented will be discussed below.

The three nodes N/IGATION, SPEECHTIME PRESSURE and ANNOUNCEMENTS
on the left correspond to the three main independent vasatfi the experiments. The

10 The technical aspects of the use of Bayesian networks in B#®R project, with a focus on
the learning of BNs, are discussed in the chapter by Wittitpisivolume.



node DFFICULTY OF SPEECHTASK refers to the rated complexity of the speech task
created by the stimulus picture (cf. Section 5). Each oféimexies represents a variable
that can be seen as influencing the values of the seven deydirdicator) variables
that were analyzed in Section 6; these variables are rapezbby the seven nodes on
the right within the box for TME SLICE 1. Further influences on the indicator variables
are represented by the seven nodes on the far right in theefiginich correspond to
individual base rates for the seven indicator variablegyTdre introduced to take into
account individual differences in the overall level of theicator variables. The value
of each such variable is constant for eathit is simply computed as the mean value
of the variable in question for the entire experiment.

The BN structure in the figure shows a rather drastic simplifin of the causal
relationships that actually exist between the variablepiestion. For example, the ab-
sence of links among the base rate variables implies the¢ theriables are statistically
independent. In addition to being implausible, this asdionpyvas shown to be false
by our own factor analyses and applications of algorithnmddarning BN structures
from data. Nonetheless, this simplified model was found téope better at the task of
recognizing a speaker’s time pressure and cognitive lcamdid more complex models
that took into account the statistical dependenties.

Our question in the evaluation study will be: If a ugéproduces a sequence of
utterances in a given experimental condition, how well cagsiems recognize what
condition the user was in? Therefore, the variablesINATION and SPEECH TIME
PRESSUREcan be viewed here agatic variables whose value does not change over
time. The seven base rate variables are also static. Byasingach of the variables
inside the boxes labeledWE SLICE 1 and TIME SLICE 2 refers to an aspect of just one
utterance. Hence correspondiemporary nodes need to be created for each utterance.
We are therefore dealing with dynamic Bayesian network (DBN) that comprises a
series otime slices.?

7.2 Quantitative Parameters

In a BN such is the one used here, which does not include agnisvariables, each
variable has 2 or more discrestates, or possible values. For example, fOANGA -
TION, the two states are “Navigation” and “No navigation”. Foe thase rate vari-
able BASE RATE FORNUMBER OF SYLLABLES, each state corresponds to one of four
ranges of numbers of syllables.

For eachroot node (i.e., a node that has no links directed at it), the system‘s i
tial expectation about the value of the variable in quesisorepresented by a vector
of probabilities that represents a probability distribati For example, for each of the
nodes $EECHTIME PRESSURE NAVIGATION, and ANNOUNCEMENTS the probabil-
ities are simply<.50, .5@>, reflecting the fact that each value of each of these vagable

11 A possible reason is that in the more complex models the attsrof some probabilities in
the learned BN are less accurate because they are basedtirehgfew observations.

12 An explanation of the general principles of dynamic Bayesiatworks can be found, for
example, in chap. 17 of [48]. A discussion with regard to usedeling of the sort done here
is given by [49].



occurred equally often in the experiments. For each of tlse bbate nodes, the proba-
bility vector reflects the empirically determined disttiilon of the base rate in question
in the group of subjects in these experiments.

For each node that is not a root node;aamditional probability table (CPT) rep-
resents the system’s assumptions about how the value ofatfiebie is related to the
values of itsparent variables (corresponding to the nodes with links that point to it).
For example, each probability in the CPT fordbLUENCIESrepresents the likelihood
that a disfluency will occur (or not occur) in an utteranceegiparticular values of the
parent variables SEECHTIME PRESSURE NAVIGATION, ANNOUNCEMENTS DIFFI-
CULTY OF SPEECHTASK, and BASE RATE FORDISFLUENCIES

A BN makes probabilistic inferences when it is evaluategigslly, one or more
variables in the BN arénstantiated; that is, the probability distribution representing
the system’s belief about the value of such a variable isacsal by a probability dis-
tribution which expresses certainty that one particuldueras realized. Then the BN
is reevaluated; typically the system’s beliefs about sofitb@uninstantiated variables
are updated to be consistent with the new information pexiioly the instantiations.

7.3 Learning the Quantitative Parameters

Although we specified the structure of the BN shown in Figutebg hand, the prob-
abilities need to be learned empirically. Such learninguigegstraightforward in a BN
(such as this one) that includes only observable variabiesccordance with the usual
maximume-likelihood method (see, e.g., [50]), the estinwdteach (conditional) proba-
bility is computed simply in terms of the (relative) frequéss in the data3

Since we want to test a learned BN model with the data of a gigern/, we must
not includel{’s data in the data that are used for the learning of the qooreting BN.
Accordingly, we learned for eadi the conditional probability tables for a separate
BN using the data from the other 63 subjects. The learned BiNHestructure shown
in Figure 11 minus the nodes shown foME SLICE 2; the CPTs for the temporary
variables within each time slice are the same as the oneslédor TIME SLICE 1.

8 Evaluation of the User Models

8.1 Procedure

The basic idea of the evaluation of the learned models canfilaired with reference
to Figure 3: Given the behavior of a subject in one of the eggbperimental conditions,
our system will try to infer which condition the subject waswhen he or she produced
that behavior. More specifically, when asking the systenssess the probability that
was under time pressure, we will tell the system whetheras navigating and whether
U was distracted by loudspeaker announcements. Similahnkgnvasking the system to
assess the probability thiatwas navigating, we will specify the true values of the other
two independent variables. (We will not report on tests afffieell S can discriminate

13 The learning of BNs in much more complex settings is disclisdtie chapter by Wittig in
this volume.



Table 3. Procedure used in evaluating the accuracy with which a éeBayesian network as-
sesses the value of the variableetcHTIME PRESSUREfor a given user. (The procedure is
identical when the value of NIGATION is to be assessed, except that the role ahdN are
interchanged.)

Relevant variables and their values
« Auseru

+ Valuest, n, anda of the Boolean variableg (Speech Time Pressurd)(Navigation),
andA (Announcements)

Task
Infer the value of on the basis of indicators #'s speech
Preparation of the test data

Select the 20 observations farin whichT =t, N =n, anda = A, in the order in which
they occurred in the experiment in question

Evaluating recognition accuracy
Initialize the model:
1. Create the first time slice of the BN far
2. Instantiate each of the individual base rate variables with its true value for

3. Also instantiatd andA with their true values anda, but leave the variablg
(whose value is to be inferred) uninstantiated

For each observatiod in the set of observations for.
1. In the newest time slice of the BN, derive a belief about
- Instantiate all of the temporary variables for this time slice with their valu@s in
« Evaluate the BN to arrive at a belief regarding
» Note the probability assigned at this point to the true viaddid
2. Add a new time slice to the dynamic BN to prepare for the next observation

between the presence and the absenceNndi@UNCEMENTS for the reasons given in

5.3, except to note in passing that the results are roughmhpeagsable to those reported
below for the recognition of ANvIGATION.)

More formally, the procedure for evaluating a learned BNiigg in Table 3.

8.2 Results

Because of the differences between Experiments 1 and 2 .@). i& Figure 12 the
results of the modeling evaluation are shown separatelydoh of the two experiments.

Each curve is the result of averaging 32 curves, one for ealgject in the experiment
in questiont

Recognizing Time PressurelLooking first at the results for recognizin@ SECHTIME
PrREssURE(left-hand graphs), we see that the BNs are on the wholerrathoeessful:
The average probability assigned to the actual currentitiondises sharply during

¥ The results for individual subjects are much less smooth thase aggregated results: The
individual curves often show sharp jumps and extreme values
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Fig. 12. Accuracy of the learned dynamic Bayesian networks in iifigrthe correct value of
SPEECH TIME PRESSURE(“T”, left) and NAvVIGATION (“N”, right) in Experiment 1 (above)
and Experiment 2 (below). (Each curve shows the aggreg&dts for one combination of
values of the variablesEECH TIME PRESSURE NAVIGATION, and ANNOUNCEMENTS In
each curve, the point for thi¢h observation shows the average probability which the Biaye
network assigned to the subject’s actual condition aftecg@ssing the firdgtobservations.)



the first few observations. Note that in each experimenggeition of SPEECHTIME
PRESSUREs easier when there is no navigation ta3Rhis result is understandable in
the light of the conventional analyses discussed in Seéti@m the whole, the effects of
time pressure were somewhat greater when there was no tiewmigesk (i.e., the lines
tended to be farther apart on the left-hand sides of the gjapimce in that condition
speakers were able to respond more sensitively to the tiegspre (or lack of it).

Recognizing Navigation In Experiment 2, the results for recognition oANGATION

are consistent over the four conditions: After several plad®ns, the system on the
average assigns a probability of roughly 0.65 to the corcecdition. The fact that
this probability never rises much above 0.70, even after &ervations, shows that
there is an inherent difficulty in discriminating betweee firesence and absence of
NAVIGATION which cannot be overcome through the provision of a largebermof
observations.

In Experiment 1, the results are generally poorer, and thewsather strange vari-
ations between conditions and over tifféne way of understanding the better results
for Experiment 2 is simply to note that the indicators showrrigures 6 through 10
tend to occur to a greater extent in Experiment 2 (i.e., teslin the right-hand graphs
in these figures tend to be higher than those in the left-haaphg). Since these indi-
cators are on the whole low-frequency events, any increageir frequency is likely
to make recognition more accurate. It may be speculatedthisbverall difference
in the frequency of indicators is due to the presence of Ipedker announcements in
Experiment 2, which push subjects closer to the limits oirthecessing capacity.

Dispensing With Individual Indicators Especially when we consider the practical
problem of measuring indicators automatically (see 8t¥ecomes interesting to con-
sider which of the seven indicators might be dispensablédhergtounds that they do
not add significantly to the accuracy of recognition. We eg¢pd the simulations sum-
marized in Figure 12 seven times, each time leaving out ortheogeven indicators.
Since it would be tedious and imprecise to examine sevehdudets of four graphs
similar to those shown in Figure 12, we computed for eachlgeagingle number that
summarizes the success of recognition: the mean of the 8tapildgies shown in the
four curves of the graph. The question then becomes: To wtahiedo these mean
probabilities decline when one of the indicator variabteleft out of consideration?
Table 4 shows the results. The indicator whose removal hagitbatest impact
is clearly NUMBER OF SYLLABLES. Each of the other indicators seems surprisingly

15 Since this statement applies to each of the observationsoligh 20 in each experiment, the
difference is statistically reliable for each experimeittvp < .001 by a sign test.

16 As was mentioned in an earlier report on Experiment 1 ([2B,results for the recognition of
navigation are actually better if the systermat told whether/ was under time pressure—
perhaps because the BN then bases its assessment on a landper rof conditional probabil-
ities and hence, indirectly, on a larger amount of data fréheiosubjects. Overall, however,
there is no systematic tendency for recognition to be bette@rorse when the system is told
the value of the independent variable(s) that it is not gtmassess.



Table 4. Impact on recognition accuracy of leaving out of consideraeach of the seven indi-

cator variables. (Each number in the column “All Indicatassthe mean of the 80 probabilities

shown in the corresponding graph in Figure 12, expressedpgscantage. Each number in a
column to the right (except the rightmost column) shows threesponding mean change in ac-
curacy (as a percentage, but in absolute terms) when théadiomuis performed without use of

the indicator variable in question. The rightmost columavehthe sum of these changes.)

All Syl-  Arti- Filled Hesi- Onset Dis- Sil-  Sum of
Indicators la- cula- Pauses ta- Laten- fluen- ent Changes
bles tion tions cy cies Pauses

Rate

Speech Time Pressure;

Experiment 1 75.76 —6.13 .00 -.09 +.07 -3.61 +36 +1.12 -8.29
Experiment 2 70.32 -5.86 -1.17 -1.21 -.60 -.18 -.04 -.04 -9.10
Navigation:

Experiment 1 56.58 -1.86 -66 -2.02 -29 +1.39 +.12 -99 -431
Experiment 2 66.51 -494 -1.11 -.84 -.54 -.35 -.03 +.44 -7.39

dispensable; and in a few cases leaving an indicator outiavamves recognition ac-
curacy. As the final column shows, the sum of the changes ésafitrfrom leaving
individual indicators out is much smaller than the extenwtach recognition exceeds
the chance level of 50%. This fact shows that the contrilnstif the indicators are not
simply additive: It may be possible to leave out one indicatithout much loss of accu-
racy because the information that it contributes is largelyplied by other indicators;
but it would not be advisable to leave out all or most of them.

The indicator that it would presumably be most practicabgful to omit is Ds-
FLUENCIES Automatically recognizing linguistic phenomena suchel§sorrections,
false starts, and interrupted sentences is considerabig difficult than measuring
(silent or filled) pauses and counting syllables, whichlisrelt is required for the other
indicatorst’ As Table 4 shows, the variablelEFLUENCIES adds at best negligible
value, provided that the other indicators are available.

8.3 Discussion

One question concerns the extent to which the results coimggthe recognition of re-

source limitations can be generalized to different (andemealistic) settings. Certainly
the specific probabilities of correct recognition are dejsem on features of the partic-
ular situation—witness the differences that arose evewdsst these two very similar
experiments. For our analyses, it was certainly helpful tha experimental situation
was highly constrained. Moreover, it was important for thstem to know the diffi-

culty of the specific speech task that the user was perforriran interactive system,
the corresponding information would consist in expectatiabout the complexity of

17 portable hardware (with associated software) for detgetind analyzing pauses in speech is
commercially available.



the utterance that the user is likely to produce in any giveraton (for example, after
a question about the user’s desired destination).

In sum, much work remains to be done before features in asusgeech can be used
for the recognition of the resource limitations of a realrugfean interactive system; and
even in the long run this possibility will probably be sulijecvarious restrictions—for
example, concerning the predictability of the speech ptediby users.

9 Summary of Contributions and Remaining Work

One goal of the present chapter was to provide a frameworkhioking about the
prospects for adapting to a user’s cognitive resourceaiits in interactive systems
in general and in mobile conversational systems in padrciie discussed why such
adaptation might be worthwhile, what forms it might taked drow the resource limi-
tations might be automatically assessed.

The more specific goal was to explore the prospects of expidihe user’'s speech
as a source of evidence for the recognition of resourcediinits. One respect in which
the two experiments presented differ from comparable ptevexperiments concerns
the number of independent variables examined simultatedibereas almost all pre-
vious studies had examined the effects of just one variaisieg]ly cognitive load), our
experiments orthogonally manipulated cognitive load greksh time pressure, as well
as repeating the experiment with and without distractiomfirrelevant speech. The na-
ture of the manipulations makes the experiments somewhi ratevant to scenarios
of mobile conversational interaction than previous experits were. But the most im-
portant new contribution concerns the results on the disiimualue of seven specific
features of speech: The evaluation experiments show tkaetimdicators together do
permit a degree of recognition of time pressure and cognitigd that could be useful
in some situations, and they indicate the effects of leawugindividual features that
would be relatively hard to recognize automatically.

Any attempt to apply the ideas and results from this chaptarparticular applica-
tion scenario will necessarily involve considerable ferttvork and creativity. But we
believe that the results presented here will be helpful @aréirgg point.
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